

User Guide for DFSORT PTFs UK51706 and UK51707

November, 2009

Frank L. Yaeger

DFSORT Team
IBM Systems Software Development

San Jose, California
Internet: yaeger@us.ibm.com

DFSORT Web Site

For papers, online books, news, tips, examples and more, visit the DFSORT home page at URL:

http://www.ibm.com/storage/dfsort/

ii DFSORT UK51706/UK51707

 Abstract

This paper is the documentation for z/OS DFSORT V1R5 PTF UK51706 and z/OS DFSORT V1R10 PTF
UK51707, which were first made available in November, 2009.

These PTFs provide important enhancements to DFSORT and DFSORT's ICETOOL for various types of two file
join applications (JOINKEYS, JOIN, REFORMAT, JKFROM); date field conversions (Y2x, Y4x, TOJUL,
TOGREG, WEEKDAY, DT, DTNS); merge operations (MERGE operator); alternate ddnames for merge files
(MERGEIN); easier migration from other sort products, and more.

This paper highlights, describes, and shows examples of the new features provided by these PTFs for DFSORT and
for DFSORT's powerful, multi-purpose ICETOOL utility. It also details new and changed messages associated with
these PTFs.

 Abstract iii

iv DFSORT UK51706/UK51707

 Contents

User Guide for DFSORT PTFs UK51706 and UK51707 1
Introduction 1
Summary of Changes 1
Operational Changes that may Require User Action 3
JOINKEYS Application for Joining Two Files 3

Introduction 3
Syntax for JOINKEYS Statements 9
Detailed Description for JOINKEYS Statement 10
Syntax for JOIN Statement 14
Detailed Description for JOIN Statement 14
Syntax for REFORMAT Statement 14
Detailed Description for REFORMAT Statement 14
JOINKEYS Application Notes 17
Example 1 - Paired F1/F2 records without duplicates 18
Example 2 - Paired F1/F2 records with duplicates (cartesian) 21
Example 3 - Paired F1 records 23
Example 4 - Unpaired F2 records 26
Example 5 - Paired and unpaired F1/F2 records (indicator method) 29
Example 6 - Paired and unpaired F1/F2 records (FILL method) 31
Using JOINKEYS with ICETOOL SORT and COPY 33

Date Field Conversions 35
Introduction 36
Syntax 36
Detailed Description for Date Field Conversions 36
Conversion of Real Dates, Special Indicators and Invalid Dates 39
Example 1 - Use of TOJUL, TOGREG and WEEKDAY 39
Example 2 - Identifying Invalid Date Values 40

Date Field Editing 41
Editing of Special Indicators and Invalid Dates 42
Example 1 - Use of Y4x(s) 43

MERGE Operator 43
Introduction 43
Syntax 43
Detailed Description 43
Example 1 - MERGE five input files to one output file 45
Example 2 - Merge seven input files to two output files 46

MERGEIN alternate ddnames 46
Introduction 46
Syntax 46
Detailed Description 46
Example 1 - Use of three alternate ddnames for MERGE 47

New Messages 47
ICE288I 48
ICE400A 48
ICE401A 48
ICE402A 49
ICE403A 49
ICE404A 49
ICE405A 49
ICE406A 50

 Contents v

ICE407A 50
ICE408A 50
ICE409A 51
ICE410A 51
ICE411I 51
ICE412A 51
ICE413A 52
ICE414A 52
ICE415A 53
ICE416I 53
ICE417I 53
ICE418A 54
ICE419I 54
ICE420A 54
ICE421I 54
ICE422I 55
ICE423A 55
ICE424A 55
ICE425A 55
ICE426A 56
ICE427A 56
ICE428A 56
ICE429A 57
ICE657A 57
ICE658A 57

Changed Messages 57
ICE005A 57
ICE018A, ICE113A, ICE114A 58
ICE022A 58
ICE039A 58
ICE054I 58
ICE056A 58
ICE068A 58
ICE083A, ICE098I, ICE118I, ICE253I, ICE254I, ICE258I, ICE298I 59
ICE111A 59
ICE151A, ICE221A 59
ICE189A 59
ICE217A 59
ICE218A 60
ICE272A 60
ICE276A 60
ICE606I 60
ICE613A 60
ICE614A 60
ICE623A 60
ICE624A 60

vi DFSORT UK51706/UK51707

User Guide for DFSORT PTFs UK51706 and UK51707

 Introduction

DFSORT is IBM's high performance sort, merge, copy, analysis and reporting product. DFSORT is an optional
feature of z/OS.

DFSORT, together with DFSMS and RACF, form the strategic product base for the evolving system-managed
storage environment. DFSMS provides vital storage and data management functions. RACF adds security func-
tions. DFSORT adds the ability to do faster and easier sorting, merging, copying, reporting and analysis of your
business information, as well as versatile data handling at the record, field and bit level.

DFSORT includes the versatile ICETOOL utility and the high-performance ICEGENER facility.

z/OS DFSORT V1R5 PTF UK51706 and z/OS DFSORT V1R10 PTF UK51707, which were first made available in
November, 2009, provide important enhancements to DFSORT and DFSORT's ICETOOL for various types of two
file join applications (JOINKEYS, JOIN, REFORMAT, JKFROM); date field conversions (Y2x, Y4x, TOJUL,
TOGREG, WEEKDAY, DT, DTNS); merge operations (MERGE operator); alternate ddnames for merge files
(MERGEIN); easier migration from other sort products, and more.

This paper highlights, describes, and shows examples of the new features provided by these PTFs for DFSORT and
for DFSORT's powerful, multi-purpose ICETOOL utility. It also details new and changed messages associated with
these PTFs.

This paper highlights, describes, and shows examples of the new features provided by these PTFs for DFSORT and
for DFSORT's powerful, multi-purpose ICETOOL utility. It also details new and changed messages associated with
these PTFs.

You can access all of the DFSORT books online by clicking the Publications link on the DFSORT home page at
URL:

http://www.ibm.com/storage/dfsort

This paper provides the documentation you need to start using the features and messages associated with z/OS
DFSORT V1R5 PTF UK51706 or z/OS DFSORT V1R10 PTF UK51707. The information in this paper will be
included in the z/OS DFSORT books at a later date.

You should refer to z/OS DFSORT Application Programming Guide for general information on DFSORT and
ICETOOL features, and in particular for the framework of existing DFSORT features upon which these new fea-
tures are built. You should refer to z/OS DFSORT Messages, Codes and Diagnosis Guide for general information
on DFSORT messages.

Summary of Changes

JOINKEYS Application

A new JOINKEYS application helps you to perform various "join" operations on two files by one or more keys. A
JOINKEYS application makes it easy to create joined records in a variety of ways including inner join, full outer
join, left outer join, right outer join, and unpaired combinations. The two input files can be of different types
(fixed, variable, VSAM, and so on) and have keys in different locations.

 User Guide for DFSORT PTFs UK51706 and UK51707 1

Three new control statements can be used for a JOINKEYS application. One JOINKEYS statement is required for
each input file to indicate the ddname of the file, describe the keys, indicate whether the file is already sorted by
those keys, and so on. An inner join is performed by default, but a JOIN statement can be used to specify a
different type of join. A REFORMAT statement is used to describe the fields from the two files to be included in
the joined records, and optionally an indicator of where the key was found ('B' for both files, '1' for file1 only or '2'
for file2 only).

The records from the two input files can be processed in a variety of ways before and after they are joined.

A new JKFROM operand makes it easy to use a JOINKEYS application with a COPY or SORT operator of
ICETOOL.

DFSORT symbols can be used for fields and constants specified in the JOINKEYS and REFORMAT statements
and in the other DFSORT statements used with a JOINKEYS application.

Date Field Conversions

Y2x, Y4x, TOJUL, TOGREG, WEEKDAY, DT and DTNS keywords for the BUILD and OVERLAY operands
make it easy to convert input date fields of one type to corresponding output date fields of another type, and to
convert a date field to a corresponding day of the week in several forms.

The date field can be in either Julian or Gregorian form, with 2-digit or 4-digit years, in CH, ZD and PD format.
For example, C'ccyyddd', P'yymmdd', Z'dddccyy', C'ccyymmdd', P'dddyy', and so on.

CH output date fields can also be displayed with separators. For example, C'ccyy/ddd', C'mm-dd-ccyy', and so on.

The day of the week can be displayed as a 1 digit, 3 character or 9 character constant. For example, C'4', C'WED'
or C'WEDNESDAY' for Wednesday.

DFSORT symbols can be used for fields in date conversions.

MERGE Operator

MERGE is a new operator of ICETOOL that allows you to merge up to 50 input files that are already in order by
the same keys. MERGE makes it easy to include DFSORT MERGE operations in your ICETOOL jobs.

Various options of MERGE allow you to define the ddnames for the input data sets (FROM), the ddnames for the
output data sets (TO), the MERGE and other DFSORT control statements to be used for the MERGE operation
(USING), and so on.

DFSORT symbols can be used in the DFSORT statements used with a MERGE operator.

MERGEIN Alternate ddnames

A new MERGEIN operand can be specified on an OPTION statement in DFSPARM or an extended parameter list
to supply alternate ddnames for input data sets used for a MERGE application. MERGEIN makes it easy to use
any ddnames you like instead of SORTINnn ddnames. You can specify up to 100 ddnames to be merged with
MERGEIN.

New 24-Bit Parameter List Codes

DFSORT now accepts and processes the following as 24-Bit parameter list control statement entry codes: X'0E',
X'0F' and X'11'.

2 DFSORT UK51706/UK51707

Operational Changes that may Require User Action

The following are operational changes that may require user action for existing DFSORT/ICETOOL applications
that use certain functions as specified:

� New reserved word for symbols

Y4x, where Y is uppercase and x is any character, is a new DFSORT/ICETOOL reserved word which is no
longer allowed as a symbol. If you used Y4x as a symbol, you must change it. For example, if you used Y4T,
you can change it to y4t.

� MERGE ddname in message ICE217A

When message ICE217A is issued for a MERGE application, DFSORT will now display the actual ddname for
the MERGE input data set rather than 'SORTINNN'.

Any automated actions based on the ICE217A message should be evaluated since the ddname will change for a
MERGE application.

JOINKEYS Application for Joining Two Files

 Introduction

You can perform various types of "join" applications on two files (F1 and F2) by one or more keys with DFSORT
using the following statements:

� JOINKEYS: You must specify two JOINKEYS statements; one for the F1 file and another for the F2 file. A
separate subtask will be used to process each file and a main task will be used to process the joined records
from the two files.

Each JOINKEYS statement must specify the ddname of the file it applies to and the starting position, length
and sequence of the keys in that file. You can also optionally specify if the file is already sorted by the keys
and if sequence checking of the keys is not needed; if the file has fixed-length or variable-length records; to
stop reading the file after n records; a 2-byte id to be used for the message and control data set for the subtask
used to process the file, and if a subset of the records is to be processed based on a logical expression.

� JOIN: If you don't specify a JOIN statement, only paired records from F1 and F2 are kept and processed by
the main task as the joined records (inner join). You can optionally specify a JOIN statement to have the main
task keep and process: unpaired F1 records as well as paired records (left outer join); unpaired F2 records as
well as paired records (right outer join); unpaired F1 and F2 records as well as paired records (full outer join);
only unpaired F1 records; only unpaired F2 records, or only unpaired F1 and F2 records.

� REFORMAT: You would normally specify a REFORMAT statement to indicate the F1 and/or F2 fields you
want in the joined records. You can optionally specify an indicator of where the key was found, and a FILL
character to be used for missing bytes. If a JOIN statement with ONLY is specified, the REFORMAT state-
ment is optional.

F1 and F2 can be any type of sequential or VSAM file supported by DFSORT for SORTIN and can have different
attributes (for example, F1 can have RECFM=FB and LRECL=100 and F2 can have RECFM=VB and
LRECL=254, or F1 can be a VSAM ESDS and F2 can be a PDS member).

F1 will be sorted or copied by "subtask1". An E35 exit will be used to pass the needed fields from the F1 records
to the "main task" (an intermediate output data set is not used or required). A subset of the DFSORT statements,
such as INCLUDE, OMIT, INREC, SUM and OPTION, will be available for processing the F1 records.

 User Guide for DFSORT PTFs UK51706 and UK51707 3

F2 will be sorted or copied by "subtask2". An E35 exit will be used to pass the needed fields from the F2 records
to the "main task" (an intermediate output data set is not used or required). A subset of the DFSORT statements,
such as INCLUDE, OMIT, INREC, SUM and OPTION, will be available for processing the F2 records.

The "main task" will use an E15 to join the records passed from the E35 of subtask1 and E35 of subtask2. The
joined records will be processed as the input records for a sort or copy application. Most of the control statements
and options available for a DFSORT sort or copy application will be available for processing the joined records.

Note: Since a JOINKEYS application uses three tasks, it can require more storage than a regular DFSORT appli-
cation. You may need to use REGION=0M for some JOINKEYS applications.

JOINKEYS Application Processing Diagram

Here's a pictorial representation of the processing performed for a JOINKEYS Application, and the order in which
the various functions are performed.

4 DFSORT UK51706/UK51707

 +------------------------+ +------------------------+
| SORTJNF1 (F1 file) | | SORTJNF2 (F2 file) |

 +------------------------+ +------------------------+
 | |
 V V
 +------------------------+ +------------------------+
| Subtask1 for F1 | | Subtask2 for F2 |

 | Messages: JNF1JMSG | | Messages: JNF2JMSG |
 | Control: JNF1CNTL | | Control: JNF2CNTL |
 -------------------------- ---------------------------
<SKIPREC>		<SKIPREC>
<E15>		<E15>
<INCLUDE/OMIT>		<INCLUDE/OMIT>
<STOPAFT>		<STOPAFT>
<INREC>		<INREC>
COPY or SORT (1)		COPY or SORT (2)

 | <SUM> | | <SUM> |
 -------------------------- ---------------------------
| E35 passes F1 fields | | E35 passes F2 fields |
| to main task's E15 (3) | | to main task's E15 (4) |

 +------------------------+ +------------------------+
 | |
 +-------------------+------------------+
 |
 V
 +--------------------------------------+

| Main task for joined records |
| Messages: SYSOUT |

 | Control: SYSIN, DFSPARM, |
SORTCNTL, parmlist

| E15 joins fields passed by |
| subtask1's E35 and subtask2's E35 |
| as directed by JOINKEYS, JOIN and |
| REFORMAT statements (5) |

 --
 | <INCLUDE/OMIT> |
 | <STOPAFT> |
 | <INREC> |

| <SORT or COPY - one required> |
 | <SUM> |
 | <OUTREC> |

| <E35/SORTOUT/OUTFIL - one required> |
 +--------------------------------------+

 User Guide for DFSORT PTFs UK51706 and UK51707 5

Legend:
(1) COPY is used automatically for subtask1 if the SORTED operand is

specified in the F1 JOINKEYS statement. Otherwise, SORT is used
automatically with the binary keys specified in the FIELDS operand
of the F1 JOINKEYS statement.

(2) COPY is used automatically for subtask2 if the SORTED operand is
specified in the F2 JOINKEYS statement. Otherwise, SORT is used
automatically with the binary keys specified in the FIELDS operand
of the F2 JOINKEYS statement.

(3) An E35 exit is used for subtask1 automatically. (An intermediate
output file is not required or used.)

(4) An E35 exit is used for subtask2 automatically. (An intermediate
output file is not required or used.)

(5) An E15 exit is used for the main task automatically. (Intermediate
input files are not required or used.)

For direct invocation of DFSORT (e.g. PGM=SORT), the JOINKEYS, JOIN and REFORMAT statements can be
specified in SYSIN or DFSPARM. For program invocation of DFSORT (e.g. LINK EP=SORT), the JOINKEYS,
JOIN and REFORMAT statements can be specified in the caller's parameter list, in SORTCNTL or in DFSPARM.

Subtask1 reads the F1 file. It uses COPY or SORT, and an E35 exit (with no output data set) automatically to pass
the needed F1 fields to the main task's E15 exit. Subtask1 can optionally use the other listed control statements
from JNF1CNTL. Subtask1 messages are displayed in JNF1JMSG.

Subtask2 reads the F2 file. It uses COPY or SORT, and an E35 exit (with no output data set) automatically to pass
the needed F2 fields to the main task's E15 exit. Subtask2 can optionally use the other listed control statements
from JNF2CNTL. Subtask2 messages are displayed in JNF2JMSG.

The main task uses an E15 exit automatically. The E15 creates the joined records by accessing the F1 fields passed
by subtask1's E35 and the F2 fields passed by subtask2's E35. The main task writes the output to SORTOUT
and/or OUTFIL or uses a supplied E35 exit to "delete" all of the records. For direct invocation of DFSORT, the
main task can optionally use the other listed control statements from SYSIN or DFSPARM. For program invoca-
tion of DFSORT, the main task can optionally use the other listed control statements from the caller's parameter
list, in SORTCNTL or in DFSPARM. The main task's messages are displayed in SYSOUT.

The starting position in the fields you specify for the subtasks or main task must reflect any reformatting of the
records you do at each stage. This includes using the starting positions of the joined records for main task func-
tions.

Examples:

� If you specify INREC and SUM statements in JNF1CNTL for subtask1, the FIELDS operands in the
JOINKEYS, REFORMAT, and SUM statements must specify the starting positions in the F1 records as refor-
matted by INREC.

� If you specify an INCLUDE statement in SYSIN for the main task, the COND operand must specify the
starting positions in the joined records as reformatted by REFORMAT.

Sample JOINKEYS Applications

Here's the JCL and control statements for a simple JOINKEYS application to do an inner join (also known as a
cartesian join) which joins all paired records.

6 DFSORT UK51706/UK51707

//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTJNF1 DD DSN=INPUT1,DISP=SHR
//SORTJNF2 DD DSN=INPUT2,DISP=SHR
//SORTOUT DD SYSOUT=*
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS FILE=F1,FIELDS=(15,2,A,7,4,A)
 JOINKEYS FILE=F2,FIELDS=(21,2,A,23,4,A)
 REFORMAT FIELDS=(F2:1,70,F1:1,60)
* Control statements for main task (joined records)
 SORT FIELDS=COPY
/*

Here's the JCL and control statements for a JOINKEYS application which omits certain records and normalizes
keys for F1 and F2, and retains only sorted, non-duplicate, unpaired records from F1. The F1 and F2 files are
already in order by the specified JOINKEYS FIELDS. DFSORT symbols are used for various fields and constants.

//S2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SYMNAMES DD *
IN1_dept,11,3,ch
IN1_target,'J82'
IN1_normal_key,27,5,ZD
IN1_output,1,60
IN2_dept,14,3,ch
IN2_target,'M25'
IN2_PD_key,21,3,PD
IN2_normal_key,=,5,ZD
join_sort_key,45,8,UFF
//FIX DD DSN=F.INPUT,DISP=SHR
//VAR DD DSN=V.INPUT,DISP=SHR
//SORTOUT DD DSN=FIXOUT1,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(5,5)),UNIT=SYSDA
//JNF1CNTL DD *
* Control statements for subtask1 (F1)
 OMIT COND=(IN1_dept,EQ,IN1_target)
 INREC OVERLAY=(IN1_normal_key:IN1_normal_key,TO=ZDF,LENGTH=5)
//JNF2CNTL DD *
* Control statements for subtask2 (F2)
 OMIT COND=(IN2_dept,EQ,IN2_target)
 INREC OVERLAY=(IN2_PD_key:IN2_PD_key,TO=ZDF,LENGTH=5)
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS F1=FIX,FIELDS=(IN1_normal_key,D),SORTED
 JOINKEYS F2=VAR,FIELDS=(IN2_normal_key,D),SORTED
 JOIN UNPAIRED,F1,ONLY
 REFORMAT FIELDS=(F1:IN1_output)
* Control statements for main task (joined records)
 SORT FIELDS=(join_sort_key,A)
 SUM FIELDS=NONE
/*

 User Guide for DFSORT PTFs UK51706 and UK51707 7

JCL for JOINKEYS Application

The required JCL statements used for a JOINKEYS application are as follows. See z/OS DFSORT Application
Programming Guide for general information on DFSORT message, control, input, output, work and symbols data
sets.

� //stepname EXEC PGM=SORT

Invokes DFSORT. PGM=ICEMAN can also be used.

Note: Since a JOINKEYS application uses three tasks, it can require more storage than a regular DFSORT
application. You may need to use REGION=0M for some JOINKEYS applications.

 � //SYSOUT DD

Messages from the main task. An alternate ddname can be supplied with MSGDDN=ddname in //DFSPARM.

 � //SORTJNF1 DD

F1 input file (read by subtask1). The ddname is SORTJNF1 (or ccccJNF1 if SORTDD=cccc is in effect) if
FILE=F1 or FILES=F1 is specified on the JOINKEYS statement. An alternate ddname can be supplied with
F1=ddname on the JOINKEYS statement.

Note: The F1 data set is treated as a SORTIN data set by subtask1 and is subject to the rules for a SORTIN
data set documented in z/OS DFSORT Application Programming Guide.

 � //SORTJNF2 DD

F2 input file (read by subtask2). The ddname is SORTJNF2 (or ccccJNF2 if SORTDD=cccc is in effect) if
FILE=F2 or FILES=F2 is specified on the JOINKEYS statement. An alternate ddname can be supplied with
F2=ddname on the JOINKEYS statement.

Note: The F2 data set is treated as a SORTIN data set by subtask2 and is subject to the rules for a SORTIN
data set documented in z/OS DFSORT Application Programming Guide.

� //SORTOUT DD or //outfil DD

Output of joined records (written by main task). An alternate ddname can be supplied with
SORTOUT=ddname or SORTDD=cccc in //DFSPARM or with the OUTFIL statement in //SYSIN or
//DFSPARM.

� //DFSPARM DD, //SYSIN DD or //SORTCNTL DD

Control statements for the main task including JOINKEYS, JOIN, REFORMAT, OPTION, SORT, INCLUDE
or OMIT, SUM, OUTREC, RECORD, ALTSEQ, MODS and OUTFIL. If SKIPREC or E15 is specified, it
will not be used.

DFSPARM can be used if DFSORT is invoked directly or called from a program. SYSIN can be used if
DFSORT is invoked directly. SORTCNTL can be used if DFSORT is called from a program; an alternate
ddname of ccccCNTL can be supplied with SORTDD=cccc in DFSPARM.

Note: If DFSORT is called from a program, the control statements for the main task can be supplied using the
parameter list.

The optional JCL statements used for a JOINKEYS application are as follows:

 � SYMNAMES DD

DFSORT symbols for the main task, subtask1 and subtask2.

 � SYMNOUT DD

Listing of symbols supplied via the SYMNAMES DD.

8 DFSORT UK51706/UK51707

 � JNF1JMSG DD

Messages from subtask1. This message data set will be dynamically allocated with SYSOUT=*,
RECFM=FBA, LRECL=121 and BLKSIZE=121 if a JNF1JMSG DD statement is not supplied. If a
JNF1JMSG DD statement is supplied, this message data set will be given the same attributes as a //SYSOUT
message data set. An alternate ddname of idF1JMSG can be supplied with TASKID=id on the JOINKEYS
statement for F1.

 � JNF2JMSG DD

Messages from subtask2. This message data set will be dynamically allocated with SYSOUT=*,
RECFM=FBA, LRECL=121 and BLKSIZE=121 if a JNF2JMSG DD statement is not supplied. If a
JNF2JMSG DD statement is supplied, this message data set will be given the same attributes as a //SYSOUT
message data set. An alternate ddname of idF2JMSG can be supplied with TASKID=id on the JOINKEYS
statement for F2.

 � JNF1CNTL DD

Control statements for subtask1 including INCLUDE or OMIT, OPTION, MODS, RECORD, ALTSEQ, INREC
and SUM. If E35 is specified, it will not be used. The following control statements must not be specified:
JOINKEYS, JOIN, REFORMAT, MERGE, OUTFIL, OUTREC or SORT.

An alternate ddname of idF1CNTL can be supplied with TASKID=id on the JOINKEYS statement for F1.

 � JNF2CNTL DD

Control statements for subtask2 including INCLUDE or OMIT, OPTION, MODS, RECORD, ALTSEQ, INREC
and SUM. If E35 is specified, it will not be used. The following control statements must not be specified:
JOINKEYS, JOIN, REFORMAT, MERGE, OUTFIL, OUTREC or SORT.

An alternate ddname of idF2CNTL can be supplied with TASKID=id on the JOINKEYS statement for F2.

 � SORTWKdd DD

Work data sets for the main task. Not recommended since dynamic allocation of work data sets is preferred.
Alternate ddnames of ccccWKdd can be supplied with SORTDD=cccc in //DFSPARM.

 � JNF1WKdd DD

Work data sets for subtask1. Not recommended since dynamic allocation of work data sets will be enabled.
Alternate ddnames of idF1WKdd can be supplied with TASKID=id on the JOINKEYS statement for F1.

 � JNF2WKdd DD

Work data sets for subtask2. Not recommended since dynamic allocation of work data sets will be enabled.
Alternate ddnames of idF2WKdd can be supplied with TASKID=id on the JOINKEYS statement for F2.

Syntax for JOINKEYS Statements

The syntax for the JOINKEYS statements is as follows:

 JOINKEYS {FILE=F1|FILE=F2|F1=ddname|F2=ddname}
 ,FIELDS=(p,m,s<,p,m,s>...)
 <,SORTED<,NOSEQCK>><,TYPE={F|V}><,STOPAFT=n><,TASKID=id>
 <,INCLUDE|OMIT=(logical_expression|ALL|NONE)>

FILES=F1 can be used as an alias for FILE=F1. FILES=F2 can be used as an alias for FILE=F2.

DFSORT symbols can be used for p,m in FIELDS, and in logical_expression in INCLUDE and OMIT wherever
symbols can be used in logical_expression in COND.

 User Guide for DFSORT PTFs UK51706 and UK51707 9

Detailed Description for JOINKEYS Statement

Two JOINKEYS statements are required for a JOINKEYS application; one for the F1 file and the other for the F2
file:

� FILE=F1 or F1=ddname must be used to indicate that the JOINKEYS statement applies to the F1 input file.
FILE=F1 associates the F1 file with a ddname of SORTJNF1. You can use a different ddname for the F1 file
by specifying F1=ddname. For simplicity, we will use SORTJNF1 when referring to the ddname for the F1
file.

� FILE=F2 or F2=ddname must be used to indicate that the JOINKEYS statement applies to the F2 input file.
FILE=F2 associates the F2 file with a ddname of SORTJNF2. You can use a different ddname for the F2 file
by specifying F2=ddname. For simplicity, we will use SORTJNF2 when referring to the ddname for the F2
file.

FILE=F1 or F1=ddname

Must be used for the JOINKEYS statement associated with the F1 file. FILE=F1 (or FILES=F1) specifies a
ddname of SORTJNF1 for the F1 file. F1=ddname can be used to specify any valid ddname for the F1 file. Do
not use the same ddname for the F1 file and the F2 file.

When FILE=F1 or F1=ddname is specified, the other operands of the JOINKEYS statement apply to the F1 file.

FILE=F2 or F2=ddname

Must be used for the JOINKEYS statement associated with the F2 file. FILE=F2 (or FILES=F2) specifies a
ddname of SORTJNF2 for the F2 file. F2=ddname can be used to specify any valid ddname for the F2 file. Do
not use the same ddname for the F1 file and the F2 file.

When FILE=F2 or F2=ddname is specified, the other operands of the JOINKEYS statement apply to the F2 file.

For example, if you specify:

 JOINKEYS FILE=F1,FIELDS=(22,3,A),SORTED
 JOINKEYS FILE=F2,FIELDS=(15,3,A)

File F1 is processed using the ddname SORTJNF1 and the operands FIELDS=(22,3,A) and SORTED. File F2 is
processed using the ddname SORTJNF2 and the operand FIELDS=(15,3,A).

FIELDS=(p,m,s<,p,m,s>...)

Must be specified to indicate the starting position, length and order (ascending or descending) of the keys in the
input file. The keys will be treated as binary, so they must be "normalized". For example, if the keys are actually
zoned decimal, they must have all C and D signs, or all F and D signs. You can use an INREC statement in
JNF1CNTL and/or JNF2CNTL to normalize the keys for the F1 file and/or F2 file, respectively, if appropriate.

Each pair of keys for the F1 and F2 files must match with respect to length and order, but can start in different
positions. For example, if the first key for the F1 file is 5 bytes ascending and the second key for the F1 file is 3
bytes descending, the first key for the F2 file must be 5 bytes ascending and the second key for the F2 file must be
3 bytes descending.

If a variable-length record is too short to contain a key you specify, the short key value will be compared using
binary zeros for the missing bytes.

10 DFSORT UK51706/UK51707

p specifies the starting position of the key. The first data byte of a fixed-length record is in position 1. The first
data byte of a variable-length record is in position 5 after the 4-byte RDW. p can be 1 to 32752 but all fields must
be completely contained within the first 32752 bytes of the record.

m specifies the length of the key. The total length of all keys must not exceed 4080 bytes. All fields must be
completely contained within the first 32752 bytes of the record.

The length for each pair of F1 and F2 keys must match.

s specifies the order of the key. Use A for ascending or D for descending.

The order for each pair of F1 and F2 keys must match.

For example, if you specify:

 JOINKEYS F1=IN1,FIELDS=(22,3,A,55,9,D)
 JOINKEYS F2=IN2,FIELDS=(15,3,A,1,9,D)

File F1 is processed using the ddname IN1, the ascending key in positions 22-24 and the descending key in posi-
tions 55-63. File F2 is processed using the ddname IN2, the ascending key in positions 15-17 and the descending
key in positions 1-9.

DFSORT symbols can be used for p,m in FIELDS.

SORTED

By default, DFSORT will sort the input file by the specified keys. If the records of the input file are already in
sorted order by the specified keys, you can use the SORTED operand to tell DFSORT to copy the records rather
than sort them. This can improve performance. DFSORT will terminate if the copied records are not in the order
specified by the keys unless you specify the NOSEQCK operand.

For example, if you specify:

 JOINKEYS FILE=F1,FIELDS=(22,3,A),SORTED
 JOINKEYS FILE=F2,FIELDS=(15,3,A)

File F1 is copied using the ddname SORTJNF1 and the ascending key in positions 22-24. The SORTJNF1 records
will be checked for the correct key order. File F2 is sorted using the ddname SORTJNF2 and the ascending key in
positions 15-17.

If you use the SORTED operand, statements and options only available for a sort application, such as SUM, will be
ignored for the subtask that copies the input file.

NOSEQCK

If you specify the SORTED operand and know that the records of the input file are already in sorted order by the
specified keys, you can use the NOSEQCK operand to tell DFSORT not to check the order of the records. This
can improve performance.

For example, if you specify:

 JOINKEYS FILE=F1,FIELDS=(22,3,A),SORTED,NOSEQCK
 JOINKEYS FILE=F2,FIELDS=(15,3,A),SORTED

File F1 is copied using the ddname SORTJNF1 and the ascending key in positions 22-24. The SORTJNF1 records
will be not be checked for the correct key order. File F2 is copied using the ddname SORTJNF2 and the ascending
key in positions 15-17. The SORTJNF2 records will be checked for the correct key order.

 User Guide for DFSORT PTFs UK51706 and UK51707 11

If the records are not actually in order by the specified keys and you use NOSEQCK, the output may be incorrect.

The NOSEQCK operand is ignored if the SORTED operand is not specified.

TYPE=F or TYPE=V

TYPE=V can be used to tell DFSORT to use variable-length processing for a VSAM input file. TYPE=F (the
default) can be used to tell DFSORT to use fixed-length processing for a VSAM input file.

For example, if you specify:

 JOINKEYS F1=VSAM1,FIELDS=(22,3,A),TYPE=V
 JOINKEYS F2=VSAM2,FIELDS=(15,3,A),TYPE=F

VSAM file F1 is sorted as variable-length records using the ddname VSAM1 and the ascending key in positions
22-24. (Remember that for TYPE=V VSAM processing, DFSORT adds an RDW in positions 1-4 which you must
account for when specifying the starting position.) VSAM file F2 is sorted as fixed-length records using the
ddname VSAM2 and the ascending key in positions 15-17. (Remember that for TYPE=F VSAM processing,
DFSORT does not add an RDW.)

STOPAFT=n

Can be used to specify the maximum number of records (n) you want the subtask for the input file to accept for
sorting or copying (accepted means read from the input file and not deleted by INCLUDE or OMIT).

n can be up to 28 digits with up to 15 significant digits.

For example, if you specify:

 JOINKEYS FILE=F1,STOPAFT=5,FIELDS=(32,4,A)
 JOINKEYS FILE=F2,STOPAFT=10,FIELDS=(32,4,A)

The first 5 input records from SORTJNF1 and the first 10 input records from SORTJNF2 will be processed.

You can use STOPAFT=n on the OPTION statement in JNF1CNTL (for the F1 file) or JNF2CNTL (for the F2 file)
instead of specifying STOPAFT=n on the JOINKEYS statement.

For example, instead of the STOPAFT operands in the JOINKEYS statements above, you could specify:

//SYSIN DD *
 JOINKEYS FILE=F1,FIELDS=(32,4,A)
 JOINKEYS FILE=F2,FIELDS=(32,4,A)
 ...
//JNF1CNTL DD *
 OPTION STOPAFT=5
//JNF2CNTL DD *
 OPTION STOPAFT=10

TASKID=id

By default, DFSORT uses the following ddnames for the subtasks:

� JNF1JMSG for the subtask1 (F1 file) message data set.

� JNF1CNTL for the subtask1 (F1 file) control data set.

� JNF1WKdd for the subtask1 (F1 file) work data sets.

� JNF2JMSG for the subtask2 (F2 file) message data set.

12 DFSORT UK51706/UK51707

� JNF2CNTL for the subtask2 (F2 file) control data set.

� JNF2WKdd for the subtask2 (F2 file) work data sets.

The TASKID=id operand can be used to change the first two characters from JN to the specified id characters. The
same id can be used for the F1 and F2 ddnames, or a different id can be used for each.

For example, if you specify:

 JOINKEYS F1=IN1,FIELDS=(1,10,A),TASKID=C1
 JOINKEYS F2=IN2,FIELDS=(22,10,A),TASKID=C1

C1F1JMSG, C1F1CNTL and C1F1WKdd will be used for subtask1 (F1 file). C1F2JMSG, C1F2CNTL and
C1F2WKdd will be used for subtask2 (F2 file).

If you specify:

 JOINKEYS F1=IN1,FIELDS=(1,10,A),TASKID=I1
 JOINKEYS F2=IN2,FIELDS=(22,10,A),TASKID=I2

I1F1JMSG, I1F1CNTL and I1F1WKdd will be used for subtask1 (F1 file). I2F2JMSG, I2F2CNTL and I2F2WKdd
will be used for subtask2 (F2 file).

The TASKID=id operand can be useful when you are doing multiple JOINKEYS applications and want to separate
the messages for each application and/or specify different control statements or work data sets for different sub-
tasks.

INCLUDE=(logical expression|ALL|NONE) or OMIT=(logical expression|ALL|NONE)

Can be used to specify criteria for the records you want the subtask for the input file to include or omit for sorting
or copying. You can use the same logical expressions, ALL or NONE in the same way as for the INCLUDE or
OMIT operand of the OUTFIL statement. See z/OS DFSORT Application Programming Guide for details.

For example, if you specify:

 JOINKEYS FILE=F1,FIELDS=(35,8,A),
 OMIT=(5,4,CH,EQ,C'ABCD')
 JOINKEYS FILE=F2,FIELDS=(37,8,A),
 INCLUDE=(1,20,SS,EQ,C'NO')

Only records without 'ABCD' in positions 5-8 will be processed from file F1. Only records with 'NO' somewhere
in positions 1-20 will be processed from file F2.

Although the INCLUDE and OMIT operands are available on the JOINKEYS statement, it is recommended that
you specify an INCLUDE or OMIT statement in JNF1CNTL or JNF2CNTL instead for ease of use.

For example, instead of the OMIT and INCLUDE operands in the JOINKEYS statements above, you could specify:

//SYSIN DD *
 JOINKEYS FILE=F1,FIELDS=(35,8,A)
 JOINKEYS FILE=F2,FIELDS=(37,8,A)
 ...
//JNF1CNTL DD *
 OMIT COND=(5,4,CH,EQ,C'ABCD')
//JNF2CNTL DD *
 INCLUDE COND=(1,20,SS,EQ,C'NO')

DFSORT symbols can be used for logical_expression in INCLUDE and OMIT wherever symbols can be used in
logical_expression in COND.

 User Guide for DFSORT PTFs UK51706 and UK51707 13

Syntax for JOIN Statement
 JOIN UNPAIRED<,F1><,F2><,ONLY>

Detailed Description for JOIN Statement

If you don't specify a JOIN statement for a JOINKEYS application, only paired records from F1 and F2 are kept
and processed by the main task as the joined records. This is known as an inner join.

You can change which records are kept and processed by the main task as the joined records by specifying a JOIN
statement. You must specify the UNPAIRED operand. The F1, F2 and ONLY operands are optional. The JOIN
operands you specify indicate the joined records to be kept and processed by the main task as follows:

UNPAIRED,F1,F2 or UNPAIRED

Unpaired records from F1 and F2 as well as paired records. This is known as a full outer join.

UNPAIRED,F1

Unpaired records from F1 as well as paired records. This is known as a left outer join.

UNPAIRED,F2

Unpaired records from F2 as well as paired records. This is known as a right outer join.

UNPAIRED,F1,F2,ONLY or UNPAIRED,ONLY

Unpaired records from F1 and F2.

UNPAIRED,F1,ONLY

Unpaired records from F1.

UNPAIRED,F2,ONLY

Unpaired records from F2.

Syntax for REFORMAT Statement
 REFORMAT FIELDS=(Fn:p,m<,p,m...><,?><,Fn:p,m<,p,m...>>...<,Fn:p>)
 <,FILL=C'c'|X'yy'>

DFSORT symbols can be used for p,m and p in FIELDS, and for the one-byte constant in FILL.

Detailed Description for REFORMAT Statement

A REFORMAT statement can always be used for a JOINKEYS application, and is required unless a JOIN state-
ment with the ONLY operand is specified. The REFORMAT statement indicates the fields from the F1 file and/or
the F2 file you want to include in the joined records, and the order in which you want the fields to appear. You
can also include an indicator of where the key was found in the joined records ('B' for key found in F1 and F2, '1'
for key found in F1 only, or '2' for key found in F2 only).

14 DFSORT UK51706/UK51707

If the REFORMAT statement only defines position with length (p,m) fields, each joined record will be fixed-length
(TYPE=F) with a LENGTH equal to the total length of all of the p,m fields. The maximum length for TYPE=F
joined records is 32760 bytes. The F1 and F2 files can both be fixed-length, both be variable-length, or can be
mixed fixed-length and variable-length.

If the REFORMAT statement defines a position without a length (p without m) field, each joined record will be
variable-length (TYPE=V) with a LENGTH equal to the total length of all of the p,m fields plus the variable length
of each p field (one for F1 and/or one for F2). The maximum length for TYPE=V joined records is 32767 bytes.
The F1 and F2 files can both be variable-length or can be mixed fixed-length and variable-length. However:

� The first field must contain the RDW (1,n with n equal to or greater than 4) and must be from a variable-length
file (F1 or F2).

� The position without length fields (one from the F1 file and/or one from the F2 file) must be the last fields
specified and must be from a variable-length file (F1 and/or F2).

For joined records created from paired records, any F1 fields specified will be extracted from the F1 record and any
F2 fields specified will be extracted from the F2 record.

For joined records created from unpaired F1 records, any F1 fields specified will be extracted from the F1 record
and any F2 fields specified will be filled with the specified FILL character or blanks by default. However, if the
F2 file is variable-length, any specified F2 RDW fields (1,n with n equal to or less than 4) will be filled with binary
zeros.

For joined records created from unpaired F2 records, any F2 fields specified will be extracted from the F2 record
and any F1 fields specified will be filled with the specified FILL character or blanks by default. However, if the
F1 file is variable-length, any specified F1 RDW fields (1,n with n equal to or less than 4) will be filled with binary
zeros.

If a JOIN statement with the ONLY operand is specified, the REFORMAT statement does not have to be specified.
In this case, the layout of the joined records will depend on the specified JOIN statement operands as follows:

 � JOIN UNPAIRED,F1,ONLY

The joined records will be the original unpaired F1 records. If the F1 records are fixed-length, the joined
records will be fixed-length. If the F1 records are variable-length, the joined records will be variable-length.

 � JOIN UNPAIRED,F2,ONLY

The joined records will be the original unpaired F2 records. If the F2 records are fixed-length, the joined
records will be fixed-length. If the F2 records are variable-length, the joined records will be variable-length.

� JOIN UNPAIRED,F1,F2,ONLY or JOIN UNPAIRED,ONLY

The joined records will be variable-length. If the F1 records are fixed-length, each unpaired F1 record will be
variable-length with an RDW followed by the original F1 record. If the F1 records are variable-length, each
unpaired F1 record will be the original F1 record. If the F2 records are fixed-length, each unpaired F2 record
will be variable-length with an RDW followed by the original F2 record. If the F2 records are variable-length,
each unpaired F2 record will be the original F2 record.

In all cases, the TYPE and LENGTH will be set as appropriate for the joined records.

For joined records with TYPE=F, the maximum LENGTH is 32760.

For joined records with TYPE=V, the maximum LENGTH is 32767. Note that the RECFM of the output file must
be VS or VBS in order to allow output records greater than 32756.

FIELDS=(Fn:p,m<,p,m...><,?><,Fn:p,m<,p,m...>>...<,Fn:p>)

 User Guide for DFSORT PTFs UK51706 and UK51707 15

Must be specified to indicate the starting position and length of each field from the F1 file and/or the F2 file to be
included in the joined records, and optionally an indicator of where the key was found. The fields and indicator
will be included in the joined records in the order in which they are specified.

F1: indicates the following fields up to the next Fn: or end of the FIELDS operand are from the F1 file.

F2: indicates the following fields up to the next Fn: or end of the FIELDS operand are from the F2 file.

p,m specifies the starting position and length of a fixed field. p specifies the starting position of the field. The
first data byte of a fixed-length record is in position 1. The first data byte of a variable-length record is in position
5 after the 4-byte RDW. p can be 1 to 32767. m specifies the length of the field. m can be 1 to 32760. All fields
must be completely contained within the first 32767 bytes of the record.

? indicates a 1-byte indicator is to be included in each joined record. The indicator will be set to one of the
following values in each paired or unpaired joined record, as appropriate:

� 'B' - the key was found in F1 and F2.

� '1' - the key was found in F1, but not in F2.

� '2' - the key was found in F2, but not in F1.

Only one ? can be specified in the FIELDS operand. If ? is not the last item, it must be followed by F1: or F2:.

For TYPE=F joined records, the indicator can appear anywhere in the record. For example, each of the following
is valid:

* Put indicator in position 1 of each joined record.
 REFORMAT FIELDS=(?,F1:1,20,F2:5,8)

* Put indicator in position 21 of each joined record.
 REFORMAT FIELDS=(F1:1,20,?,F1:31,9)

* Put indicator in position 25 of each joined record.
 REFORMAT FIELDS=(F2:11,20,6,4,?)

For TYPE=V joined records, the indicator must appear in the fixed part of the record, that is, after the RDW and
before the position without length fields. For example, the following is valid:

* Put indicator in position 5 of each joined record.
 REFORMAT FIELDS=(F1:1,4,?,F1:11)

p (without m) gives the starting position of a variable field. Only one p without m field can be specified for F1
and only one p without m field can be specified for F2.

If either or both p without m fields are specified, they must be the last fields in the FIELDS operand. In this case,
the first field in the FIELDS operand must be from a variable-length file (F1 or F2) and must include the RDW
(1,n where n is equal to or greater than 4).

Example with just p,m fields:

 REFORMAT FIELDS=(F1:27,5,1,8,F2:19,20,F1:1201,15)

Example with one p without m field:

 REFORMAT FIELDS=(F1:1,4,F2:6,25,92,2,F1:8,9,32)

Example with two p without m fields:

16 DFSORT UK51706/UK51707

 REFORMAT FIELDS=(F2:1,9,21,3,F1:101,7,28,9,122,F2:26)

FILL=C'c' or FILL=X'yy'

The FILL operand can be used to override DFSORT's default fill byte of a blank (X'40'). The fill byte is used in
the following situations:

� A p,m (fixed) field is specified for a file (F1 or F2) with variable-length records, and the field extends beyond
the end of a record. Each missing byte is replaced with the fill byte. For example, if a variable-length F1
record is 20 bytes long and the REFORMAT statement has:

 REFORMAT FIELDS=(F1:1,30,41),FILL=C'*'

bytes 21-30 of the joined record are filled with asterisks.

� The REFORMAT statement has a p,m (fixed) field from the F1 file and a joined record is being created from
an unpaired F2 record. For example if the following are specified:

 JOIN UNPAIRED,F2
 REFORMAT FIELDS=(F1:21,5,F2:1,10),FILL=X'00'

and an unpaired F2 record is found, the joined record will have 5 binary zero bytes followed by bytes 1-10
from the F2 record.

� The REFORMAT statement has a p,m (fixed) field from the F2 file and a joined record is being created from
an unpaired F1 record. For example if the following are specified:

 JOIN UNPAIRED,F1,F2
 REFORMAT FIELDS=(F1:21,5,F2:1,10),FILL=X'00'

and an unpaired F1 record is found, the joined record will have bytes 21-25 of the F1 record followed by 10
binary zero bytes. (Since UNPAIRED,F1,F2 is specified, if an unpaired F2 record is found, the joined record
will have 5 binary zero bytes followed by bytes 1-10 of the F2 record.)

C'c' specifies a character fill byte. c must be one EBCDIC character. If you want to use an apostrophe as the fill
byte, you must specify it as C''''.

X'yy' specifies a hexadecimal fill byte. yy must be one pair of hexadecimal digits (00-FF).

JOINKEYS Application Notes

In the notes below, "subtaskn" refers to subtask1 for the F1 file or subtask2 for the F2 file.

Notes:

1. Since a JOINKEYS application uses three tasks, it can require more storage than a regular DFSORT applica-
tion. You may need to use REGION=0M for some JOINKEYS applications.

2. DFSORT's normal syntax and continuation rules are used for the JOINKEYS, JOIN and REFORMAT state-
ments. See z/OS DFSORT Application Programming Guide for details.

3. Control statements from DFSPARM, SYSIN (direct invocation) or SORTCNTL (program invocation) will be
used for the main task, but not for the subtasks. Control statements from JNF1CNTL will be used for
subtask1. Control statements from JNF2CNTL will be used for subtask2.

4. For the main task, the normal options in effect for a DFSORT run will be used. The run-time options will be
those from DFSPARM, SYSIN, SORTCNTL, EXEC PARM or the caller's parameter list, as appropriate. The
installation options will be those for direct invocation or program invocation of DFSORT, as appropriate.

 User Guide for DFSORT PTFs UK51706 and UK51707 17

5. For subtaskn, the options in effect for the subtask will be used with the exceptions noted below. The run-time
options will be those from JNFnCNTL. The installation options will be those for a calling program (INV,
TSOINV, TD1-TD4).

6. TYPE=F processing is used for a VSAM F1 or F2 file by default. TYPE=V can be specified in JNFnCNTL,
or on the JOINKEYS statement for Fn, to override the default of TYPE=F.

7. For subtaskn, if an INCLUDE or OMIT statement or a STOPAFT or TYPE option is specified in JNFnCNTL,
it will override the corresponding option in a JOINKEYS statement for Fn. For ease of use, it is recommended
that you use an INCLUDE or OMIT statement, and a STOPAFT or TYPE option, in JNFnCNTL rather than an
INCLUDE, OMIT, STOPAFT or TYPE operand in a JOINKEYS statement.

8. For the main task, override of statements and options is done in the normal way, that is, DFSPARM overrides
SYSIN for direct invocation of DFSORT, and DFSPARM overrides SORTCNTL overrides the caller's param-
eter list for program invocation of DFSORT. See z/OS DFSORT Application Programming Guide for details.

9. The following options will be used for subtaskn and cannot be overridden: LIST, MSGPRT=ALL,
NOABEND, ESTAE, NOCHECK, EQUALS and RESINV=0. DYNALLOC will be used automatically for
subtaskn, but can be overridden by a DYNALLOC option in JNFnCNTL.

10. If an INCLUDE or OMIT statement is specified in JNFnCNTL, DFSORT will use the following options in
effect for subtaskn processing: ALTSEQ, CHALT or NOCHALT, SZERO or NOSZERO and VLSCMP or
NOVLSCMP. These options can be specified in JNFnCNTL. The subtaskn LOCALE installation option in
effect will also be used if appropriate.

11. If an INCLUDE or OMIT operand is specified on the JOINKEYS statement for Fn, DFSORT will use these
main task options in effect for subtaskn processing: ALTSEQ, CHALT or NOCHALT, SZERO or NOSZERO
and VLSCMP or NOVLSCMP. If these options are specified in JNFnCNTL, they will be ignored for subtaskn
processing. LOCALE will not be used.

12. For subtaskn, the following statements are not allowed in JNFnCNTL: JOINKEYS, JOIN, MERGE, OUTFIL,
OUTREC, REFORMAT and SORT.

13. For the main task, a MERGE statement other than MERGE FIELDS=COPY is not allowed in any source.

14. If appropriate, options such as FILSZ, DYNALLOC, AVGRLEN, and so on can be specified in JNFnCNTL for
subtaskn, or in DFSPARM for the main task.

15. If tape data sets are used for the F1 and F2 files, they must be on different drives so DFSORT can read them
in parallel.

Example 1 - Paired F1/F2 records without duplicates

18 DFSORT UK51706/UK51707

//JKE1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTJNF1 DD *
Roses 03 Red
Daisies 06 Orange
Roses 04 Pink
Daisies 02 Yellow
Roses 06 Yellow
Daisies 12 Lilac
Roses 09 Blue
/*
//SORTJNF2 DD *
Red Lilies InStock
Red Roses InStock
Orange Daisies SoldOut
Pink Roses SoldOut
Yellow Daisies InStock
Yellow Roses Ordered
Lilac Daisies SoldOut
White Daisies InStock
/*
//SORTOUT DD SYSOUT=*
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS FILE=F1,FIELDS=(1,15,A,20,8,A)
 JOINKEYS FILE=F2,FIELDS=(10,15,A,1,8,A)
 REFORMAT FIELDS=(F1:20,8,1,15,F2:26,10,F1:16,2)
* Control statements for main task (joined records)
 OPTION COPY
 OUTFIL REMOVECC,
 HEADER2=(1:'Color',11:'Flower',26:'Status',36:'Per Pot',/,
 1:7'-',11:14'-',26:7'-',36:7'-'),
 BUILD=(1:1,8,11:9,15,26:24,10,
 36:34,2,ZD,M10,LENGTH=7)
/*

This example illustrates how you can join paired records from two files using multiple keys. In this case, neither
file has duplicates. The paired records are the records in F1 and F2 with matching keys (for example, key1=Roses
and key2=Red).

Input file1 (F1) has RECFM=FB and LRECL=80. It contains the records shown for SORTJNF1 in the JCL above.
Input file2 (F2) has RECFM=FB and LRECL=80. It contains the records shown for SORTJNF2 in the JCL above.

The output file will have RECFM=FB and LRECL=42. It will contain the paired records from the two files refor-
matted as follows:

Color Flower Status Per Pot
------- -------------- ------- -------
Lilac Daisies SoldOut 12
Orange Daisies SoldOut 6
Yellow Daisies InStock 2
Pink Roses SoldOut 4
Red Roses InStock 3
Yellow Roses Ordered 6

The first JOINKEYS statement defines the ddname and keys for the F1 file. FILE=F1 tells DFSORT that the
ddname for the F1 file is SORTJNF1. FIELDS=(1,15,A,20,8,A) tells DFSORT that the first binary key is in posi-

 User Guide for DFSORT PTFs UK51706 and UK51707 19

tions 1-15 ascending and the second binary key is in positions 20-27 ascending. Since SORTED is not specified,
DFSORT will sort the SORTJNF1 records by the specified binary keys.

The second JOINKEYS statement defines the ddname and keys for the F2 file. FILE=F2 tells DFSORT that the
ddname for the F2 file is SORTJNF2. FIELDS=(10,15,A,1,8,A) tells DFSORT that the first binary key is in posi-
tions 10-24 ascending and the second binary key is in positions 1-8 ascending. Since SORTED is not specified,
DFSORT will sort the SORTJNF2 records by the specified binary keys.

Note that corresponding keys for the two files match in length and order.

The REFORMAT statement defines the fields to be extracted for the joined records in the order in which they are
to appear. FIELDS=(F1:20,8,1,15,F2:26,10,F1:16,2) tells DFSORT to create the joined records as follows:

Joined Record Positions Extracted from
----------------------- ------------------
1-8 F1 positions 20-27
9-23 F1 positions 1-15
24-33 F2 positions 26-35
34-35 F1 positions 16-17

Since there is no JOIN statement, only paired records are joined by default.

The OPTION COPY statement tells DFSORT to copy the joined records. The OUTFIL statement tells DFSORT to
reformat the joined records, display a header at the top of each page and remove the carriage control characters.
Note that the BUILD operand of the OUTFIL statement must reference the positions of fields in the joined records.

Conceptually, JOINKEYS application processing proceeds as follows:

� Subtask1 sorts the SORTJNF1 (F1 file) records as directed by its JOINKEYS statement. As a result, it passes
the following records to the main task:

Daisies 12 Lilac
Daisies 06 Orange
Daisies 02 Yellow
Roses 09 Blue
Roses 04 Pink
Roses 03 Red
Roses 06 Yellow

� Subtask2 sorts the SORTJNF2 (F2 file) records as directed by its JOINKEYS statement. As a result, it passes
the following records to the main task:

Lilac Daisies SoldOut
Orange Daisies SoldOut
White Daisies InStock
Yellow Daisies InStock
Red Lilies InStock
Pink Roses SoldOut
Red Roses InStock
Yellow Roses Ordered

� The main task joins the records passed from subtask1 and subtask2 as directed by the specified JOINKEYS and
REFORMAT statements, resulting in the following joined records:

20 DFSORT UK51706/UK51707

Lilac Daisies SoldOut 12
Orange Daisies SoldOut 06
Yellow Daisies InStock 02
Pink Roses SoldOut 04
Red Roses InStock 03
Yellow Roses Ordered 06

� Finally, the main task copies and reformats the joined records according to the OUTFIL statement, and writes
the resulting records to SORTOUT. Thus, SORTOUT contains these records:

Color Flower Status Per Pot
------- -------------- ------- -------
Lilac Daisies SoldOut 12
Orange Daisies SoldOut 6
Yellow Daisies InStock 2
Pink Roses SoldOut 4
Red Roses InStock 3
Yellow Roses Ordered 6

Example 2 - Paired F1/F2 records with duplicates (cartesian)
//JKE2 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//VBIN DD DSN=MY.VBFILE,DISP=SHR
//FBIN DD DSN=MY.FBFILE,DISP=SHR
//SORTOUT DD DSN=MY.FB.OUTPUT,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(5,5)),UNIT=SYSDA
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS F1=VBIN,FIELDS=(18,16,A),SORTED
 JOINKEYS F2=FBIN,FIELDS=(1,16,A)
 REFORMAT FIELDS=(F2:22,12,F1:5,12,F2:1,16)
* Control statements for main task (joined records)
 OPTION EQUALS
 SORT FIELDS=(13,12,CH,A)
/*

This example illustrates how you can join paired records from two files, both of which have duplicate records. The
result will be a cartesian join. The paired records are the records in F1 and F2 with matching keys (for example,
key=Cats).

Input file1 has RECFM=VB and LRECL=50. It contains the following records:

Len|Data
 40|Eliot Cats Musical
 40|Lloyd-Webber Cats Musical
 48|Hart Pal Joey Musical, Comedy
 48|Rodgers Pal Joey Musical, Comedy
 47|Hammerstein South Pacific Musical, Drama
 47|Rodgers South Pacific Musical, Drama

Input file2 has RECFM=FB and LRECL=36. It contains the following records:

Pal Joey Start: 1940 22
South Pacific Start: 1949 13
Cats Start: 1982 50
South Pacific End: 1954
Cats End: 2000
Pal Joey End: 1941

 User Guide for DFSORT PTFs UK51706 and UK51707 21

The output file will have RECFM=FB and LRECL=40. It will contain the paired cartesian product of the two files
sorted as follows:

Start: 1982 Eliot Cats
End: 2000 Eliot Cats
Start: 1949 Hammerstein South Pacific
End: 1954 Hammerstein South Pacific
Start: 1940 Hart Pal Joey
End: 1941 Hart Pal Joey
Start: 1982 Lloyd-WebberCats
End: 2000 Lloyd-WebberCats
Start: 1940 Rodgers Pal Joey
End: 1941 Rodgers Pal Joey
Start: 1949 Rodgers South Pacific
End: 1954 Rodgers South Pacific

The first JOINKEYS statement defines the ddname and key for the F1 file. F1=VBIN tells DFSORT that the
ddname for the F1 file is VBIN. FIELDS=(18,16,A) tells DFSORT that the key is in positions 18-33 ascending.
Note that since VBIN is a VB file, the starting position of its key must take the RDW in positions 1-4 into account.
Since SORTED is specified, indicating that the records are already in order by the specified binary key, DFSORT
will copy the VBIN records.

The second JOINKEYS statement defines the ddname and binary key for the F2 file. F2=FBIN tells DFSORT that
the ddname for the F2 file is FBIN. FIELDS=(1,16,A) tells DFSORT that the binary key is in positions 1-16
ascending. Since SORTED is not specified, DFSORT will sort the FBIN records by the specified binary key.

The REFORMAT statement defines the fields to be extracted for the joined records in the order in which they are
to appear. FIELDS=(F2:22,12,F1:5,12,F2:1,16) tells DFSORT to create the joined records as follows:

Joined Record Positions Extracted from
----------------------- ------------------
1-12 F2 positions 22-33
13-24 F1 positions 5-16
25-40 F2 positions 1-16

Note that since VBIN (F1) is a VB file, the starting position of its REFORMAT field must take the RDW in
positions 1-4 into account.

Since there is no JOIN statement, only paired records are joined by default. Since there are duplicates in each input
file, a cartesian join is performed.

The SORT FIELDS=(13,12,CH,A) statement tells DFSORT to sort the joined records by a different key than the
one used for the join of F1 and F2 records. Note that the FIELDS operand of the SORT statement must reference
the positions of fields in the joined records.

Conceptually, JOINKEYS application processing proceeds as follows:

� Subtask1 copies the VBIN (F1 file) records as directed by its JOINKEYS statement. As a result, it passes the
following records to the main task:

Len|Data
 40|Eliot Cats Musical
 40|Lloyd-Webber Cats Musical
 48|Hart Pal Joey Musical, Comedy
 48|Rodgers Pal Joey Musical, Comedy
 47|Hammerstein South Pacific Musical, Drama
 47|Rodgers South Pacific Musical, Drama

22 DFSORT UK51706/UK51707

� Subtask2 sorts the FBIN (F2 file) records as directed by its JOINKEYS statement. As a result, it passes the
following records to the main task:

Cats Start: 1982 50
Cats End: 2000
Pal Joey Start: 1940 22
Pal Joey End: 1941
South Pacific Start: 1949 13
South Pacific End: 1954

� The main task joins the records passed from subtask1 and subtask2 as directed by the specified JOINKEYS and
REFORMAT statements, resulting in the following joined records:

Start: 1982 Eliot Cats
End: 2000 Eliot Cats
Start: 1982 Lloyd-WebberCats
End: 2000 Lloyd-WebberCats
Start: 1940 Hart Pal Joey
End: 1941 Hart Pal Joey
Start: 1940 Rodgers Pal Joey
End: 1941 Rodgers Pal Joey
Start: 1949 Hammerstein South Pacific
End: 1954 Hammerstein South Pacific
Start: 1949 Rodgers South Pacific
End: 1954 Rodgers South Pacific

� Finally, the main task sorts the joined records according to the SORT statement, and writes the resulting
records to SORTOUT. Thus, SORTOUT contains these records:

Start: 1982 Eliot Cats
End: 2000 Eliot Cats
Start: 1949 Hammerstein South Pacific
End: 1954 Hammerstein South Pacific
Start: 1940 Hart Pal Joey
End: 1941 Hart Pal Joey
Start: 1982 Lloyd-WebberCats
End: 2000 Lloyd-WebberCats
Start: 1940 Rodgers Pal Joey
End: 1941 Rodgers Pal Joey
Start: 1949 Rodgers South Pacific
End: 1954 Rodgers South Pacific

Example 3 - Paired F1 records

 User Guide for DFSORT PTFs UK51706 and UK51707 23

//JKE3 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//MASTER DD DSN=MASTER.FILE,DISP=SHR
//PULL DD DSN=PULL.FILE,DISP=SHR
//SORTOUT DD SYSOUT=*
//JNF1CNTL DD *
* Control statement for subtask1 (F1)
 INREC PARSE=(%01=(ENDBEFR=C',',FIXLEN=15),
 %=(ENDBEFR=C','),
 %02=(ENDBEFR=C',',FIXLEN=10)),
 OVERLAY=(36:%01,52:%02)
/*
//DFSPARM DD *
* Control statements for JOINKEYS application
 JOINKEYS F1=MASTER,FIELDS=(36,15,A,52,10,A)
 JOINKEYS F2=PULL,FIELDS=(12,15,A,1,10,A)
 REFORMAT FIELDS=(F1:1,35)
* Control statement for main task
 OPTION COPY
/*

This example illustrates how you can select only paired records from one of two files. In this case, we will select
the F1 records that have a match in F2 on the specified keys (for example, key1=Development and key2=Master).
The F1 records are in comma delimited form so we will parse them to get the binary keys we need.

Input file1 (F1) has RECFM=FB and LRECL=35. It contains the following records:

Marketing,William,Master
Development,John,Bachelor
Manufacturing,Louis,Master
Development,Carol,Master
Research,Angela,Master
Research,Anne,Doctorate
Development,Sara,Doctorate
Marketing,Joseph,Master
Manufacturing,Donna,Bachelor
Development,Susan,Master
Manufacturing,Nick,Master
Research,Howard,Doctorate

Input file2 (F2) has RECFM=FB and LRECL=30. It contains the following records:

Master Development
Master Manufacturing
Bachelor Development
Doctorate Research

The output file will have RECFM=FB and LRECL=35. It will contain the paired F1 records, that is, the records
from F1 that have a match in F2 for the specified keys (the first and third fields):

Development,John,Bachelor
Development,Carol,Master
Development,Susan,Master
Manufacturing,Louis,Master
Manufacturing,Nick,Master
Research,Anne,Doctorate
Research,Howard,Doctorate

24 DFSORT UK51706/UK51707

The first JOINKEYS statement defines the ddname and keys for the F1 file. F1=MASTER tells DFSORT that the
ddname for the F1 file is MASTER.

The control statements in JNF1CNTL will be used to process the F1 file before it is sorted. The input records are
in comma delimited form, so to use the first and third fields as binary keys, while preserving the original data, we
use an INREC statement to parse out the fields we want and add them to the end of the record. The parsed first
key will be in positions 36-50 and the parsed second key will be in positions 52-61. For example, the first refor-
matted record will look like this:

Marketing,William,Master Marketing Master

FIELDS=(36,15,A,52,10,A) in the JOINKEYS statement (referring to the reformatted INREC positions) tells
DFSORT that the first key is in positions 36-50 ascending and the second key is in positions 52-61 ascending.

The second JOINKEYS statement defines the ddname and keys for the F2 file. F2=PULL tells DFSORT that the
ddname for the F2 file is PULL.

FIELDS=(12,15,A,1,10,A) in the JOINKEYS statement tells DFSORT that the first key is in positions 12-26
ascending and the second key is in positions 1-10 ascending.

The REFORMAT statement defines the fields to be extracted for the joined records in the order in which they are
to appear. FIELDS=(F1:1,35) tells DFSORT to create the joined records from the original F1 input records (posi-
tions 1-35 of the F1 records). Since we only needed the added parsed fields for sorting, we don't need to include
them in the joined records. Of course, if we wanted the main task to "see" the parsed fields in the joined records,
we could include the parsed fields in the REFORMAT FIELDS operand.

Since there is no JOIN statement, only paired records are joined by default.

The OPTION COPY statement tells DFSORT to copy the joined records.

Conceptually, JOINKEYS application processing proceeds as follows:

� Subtask1 performs INREC processing for the MASTER (F1 file) records as directed by the control statement in
JNF1CNTL and sorts the resulting records as directed by its JOINKEYS statement. As a result, it passes the
following records to the main task:

Development,John,Bachelor Development Bachelor
Development,Sara,Doctorate Development Doctorate
Development,Carol,Master Development Master
Development,Susan,Master Development Master
Manufacturing,Donna,Bachelor Manufacturing Bachelor
Manufacturing,Louis,Master Manufacturing Master
Manufacturing,Nick,Master Manufacturing Master
Marketing,William,Master Marketing Master
Marketing,Joseph,Master Marketing Master
Research,Howard,Doctorate Research Doctorate
Research,Anne,Doctorate Research Doctorate
Research,Angela,Master Research Master

� Subtask2 sorts the PULL (F2 file) records as directed by its JOINKEYS statement. As a result, it passes the
following records to the main task:

Bachelor Development
Master Development
Master Manufacturing
Doctorate Research

 User Guide for DFSORT PTFs UK51706 and UK51707 25

� The main task joins the records passed from subtask1 and subtask2 as directed by the specified JOINKEYS and
REFORMAT statements, resulting in the following joined records:

Development,John,Bachelor
Development,Carol,Master
Development,Susan,Master
Manufacturing,Louis,Master
Manufacturing,Nick,Master
Research,Anne,Doctorate
Research,Howard,Doctorate

� Finally, the main task copies the joined records to SORTOUT. Thus, SORTOUT contains these records:

Development,John,Bachelor
Development,Carol,Master
Development,Susan,Master
Manufacturing,Louis,Master
Manufacturing,Nick,Master
Research,Anne,Doctorate
Research,Howard,Doctorate

Example 4 - Unpaired F2 records
//JKE4 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//IN1 DD DSN=FILE1.IN,DISP=SHR
//IN2 DD DSN=FILE2.IN,DISP=SHR
//SORTOUT DD DSN=FILE3.OUT,DISP=OLD
//JNF1CNTL DD *
* Control statements for subtask1 (F1)
 OMIT COND=(10,5,UFF,EQ,99999)
 INREC BUILD=(1,8,9:10,5,UFF,TO=ZD,LENGTH=5)
/*
//JNF2CNTL DD *
* Control statements for subtask2 (F2)
 OMIT COND=(14,5,UFF,EQ,99999)
 INREC BUILD=(1,4,5:14,5,UFF,TO=ZD,LENGTH=5,10:5)
/*
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS F1=IN1,FIELDS=(1,8,A,9,5,D)
 JOINKEYS F2=IN2,FIELDS=(10,8,A,5,5,D)
 JOIN UNPAIRED,F2,ONLY
 REFORMAT FIELDS=(F2:1,4,10)
* Control statement for main task
 OPTION COPY
/*

This example illustrates how you can select only unpaired records from one of two files. In this case, we will
select the F2 records that do not have a match in F1 on the specified keys (for example, key1=Molly and
key2=2100). We will also omit certain records from each input file and handle unnormalized keys.

Input file1 has RECFM=FB and LRECL=15. It contains the following records:

26 DFSORT UK51706/UK51707

Molly 145
Molly 99999
Molly 2143
Jasmine 1292
Jasmine 5
Jasmine 28
Jasmine 99999

Input file2 has RECFM=VB and LRECL=35. It contains the following records:

Len|Data
 30|Molly 145 Thursday
 31|Molly 2100 Wednesday
 28|Molly 18 Sunday
 28|Jasmine 99999 Monday
 28|Jasmine 5 Sunday
 30|Jasmine 28 Saturday
 29|Jasmine 103 Tuesday
 31|Jasmine 99999 Wednesday

The output file will have RECFM=VB and LRECL=35. F1 records with 99999 in positions 10-14 and F2 records
with 99999 in positions 14-18 will be removed before join processing. The output file will contain unpaired F2
records (that is, records from F2 that do not have a match in F1 for the specified keys) as follows:

Len|Data
 29|Jasmine 103 Tuesday
 31|Molly 2100 Wednesday
 28|Molly 18 Sunday

The first JOINKEYS statement defines the ddname and keys for the F1 file. F1=IN1 tells DFSORT that the
ddname for the F1 file is IN1.

The control statements in JNF1CNTL will be used to process the F1 file before it is sorted. The OMIT statement
removes records that have 99999 in positions 10-14. We want to use the numeric field as our key. However, the
numeric field is unnormalized since it is left aligned instead of right aligned, so sorting it as a binary key will not
work. To handle this, we use the INREC statement to reformat the numeric field as ZD values in positions 9-13
(positive ZD values with the same sign can be sorted as binary). For example, the first reformatted FB record will
look like this:

Molly 00145

Since we don't need the F1 records for output, we don't need to keep the original left aligned numeric value.

FIELDS=(1,8,A,9,5,D) in the JOINKEYS statement (referring to the reformatted INREC positions) tells DFSORT
that the first key is in positions 1-8 ascending and the second key is in positions 9-13 descending.

The second JOINKEYS statement defines the ddname and keys for the F2 file. F2=IN2 tells DFSORT that the
ddname for the F2 file is IN2.

The control statements in JNF2CNTL will be used to process the F2 file before it is sorted. The OMIT statement
removes records that have 99999 in positions 14-18. Again, we need a ZD version of the left aligned numeric
value to use for the binary key. But in this case, since we want the original F2 records for output, we need to keep
the original numeric value as well. Using the INREC statement, we add the ZD value at positions 5-9 between the
RDW and the first data field. That shifts the original data to start at position 10. For example, the first reformatted
VB record will look like this:

Len|Data
 35|00145Molly 145 Thursday

 User Guide for DFSORT PTFs UK51706 and UK51707 27

In this case, since the input is a VB file, we specify the RDW (1,4), then the converted field, and then the rest of
the record (5 without a length) in the INREC statement.

FIELDS=(10,8,A,5,5,D) in the JOINKEYS statement (referring to the reformatted INREC positions) tells DFSORT
that the first key is in positions 10-17 ascending and the second key is in positions 5-9 descending.

Note that since IN2 is a VB file, all of its starting positions must take the RDW in positions 1-4 into account.

The JOIN statement tells DFSORT that the joined records should be the F2 records that do not have a match in F1
on the specified keys.

The REFORMAT statement defines the fields to be extracted for the joined records in the order in which they are
to appear. We need the RDW (1,4) and the original data which starts in position 10 of the reformatted F2 records.
So we use FIELDS=(F2:1,4,10). Since the last field (10) is a position without a length, it tells DFSORT to create
VB records. The joined records are created as follows from the reformatted F2 records:

Joined Record Positions Extracted from
----------------------- ---------------------------------
1-4 RDW (not extracted)
5 to end Reformatted F2 position 10 to end

Conceptually, JOINKEYS application processing proceeds as follows:

� Subtask1 performs OMIT and INREC processing for the IN1 (F1 file) records as directed by the control state-
ments in JNF1CNTL and sorts the resulting records as directed by its JOINKEYS statement. As a result, it
passes the following records to the main task:

Jasmine 01292
Jasmine 00028
Jasmine 00005
Molly 02143
Molly 00145

� Subtask2 performs OMIT and INREC processing for the IN2 (F2 file) records as directed by the control state-
ments in JNF2CNTL and sorts the resulting records as directed by its JOINKEYS statement. As a result, it
passes the following records to the main task:

Len|Data
 34|00103Jasmine 103 Tuesday
 35|00028Jasmine 28 Saturday
 33|00005Jasmine 5 Sunday
 36|02100Molly 2100 Wednesday
 35|00145Molly 145 Thursday
 33|00018Molly 18 Sunday

� The main task joins the records passed from subtask1 and subtask2 as directed by the specified JOINKEYS,
JOIN and REFORMAT statements, resulting in the following joined records (unmatched F2 records):

Len|Data
 29|Jasmine 103 Tuesday
 31|Molly 2100 Wednesday
 28|Molly 18 Sunday

� Finally, the main task copies the joined records, and writes them to SORTOUT. Thus, SORTOUT contains
these records:

Len|Data
 29|Jasmine 103 Tuesday
 31|Molly 2100 Wednesday
 28|Molly 18 Sunday

28 DFSORT UK51706/UK51707

Example 5 - Paired and unpaired F1/F2 records (indicator method)
//JKE5 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTJNF1 DD DSN=FIRST.FILE,DISP=SHR
//SORTJNF2 DD DSN=SECOND.FILE,DISP=SHR
//F1ONLY DD SYSOUT=*
//F2ONLY DD SYSOUT=*
//BOTH DD SYSOUT=*
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS FILE=F1,FIELDS=(1,10,A),SORTED,NOSEQCK
 JOINKEYS FILE=F2,FIELDS=(7,10,A),SORTED,NOSEQCK
 JOIN UNPAIRED,F1,F2
 REFORMAT FIELDS=(F1:1,14,F2:1,20,?)
* Control statements for main task (joined records)
 OPTION COPY
 OUTFIL FNAMES=F1ONLY,INCLUDE=(35,1,CH,EQ,C'1'),
 BUILD=(1,14)
 OUTFIL FNAMES=F2ONLY,INCLUDE=(35,1,CH,EQ,C'2'),
 BUILD=(15,20)
 OUTFIL FNAMES=BOTH,INCLUDE=(35,1,CH,EQ,C'B'),
 BUILD=(1,14,/,15,20)
/*

This example illustrates how you can create three output files; with paired F1/F2 records, unpaired F1 records and
unpaired F2 records. In this case:

� F1 records which do not have a match in F2 on the specified keys (for example, key=David) will be written to
the F1ONLY output file.

� F2 records which do not have a match in F1 on the specified keys (for example, key=Karen) will be written to
the F2ONLY output file.

� F1 and F2 records which have a match in F1 and F2 on the specified keys (for example, key=Carrie) will be
written to the BOTH output file.

Input file1 has RECFM=FB and LRECL=14. It contains the following records:

Carrie F101
David F102
Frank F103
Holly F104
Vicky F105

Input file2 has RECFM=FB and LRECL=20. It contains the following records:

No Carrie F201
Yes Holly F202
Yes Karen F203
No Sri Hari F204
Yes Vicky F205

The F1ONLY file will have RECFM=FB and LRECL=14. It will contain the unpaired F1 records as follows:

David F102
Frank F103

The F2ONLY file will have RECFM=FB and LRECL=20. It will contain the unpaired F2 records as follows:

 User Guide for DFSORT PTFs UK51706 and UK51707 29

Yes Karen F203
No Sri Hari F204

The BOTH file will have RECFM=FB and LRECL=20. It will contain the paired F1 and F2 records as follows:

Carrie F101
No Carrie F201
Holly F104
Yes Holly F202
Vicky F105
Yes Vicky F205

The first JOINKEYS statement defines the ddname and key for the F1 file. FILE=F1 tells DFSORT that the
ddname for the F1 file is SORTJNF1. FIELDS=(1,10,A) tells DFSORT that the key is in positions 1-10 ascending.
Since SORTED is specified, indicating that the records are already in order by the specified binary key, DFSORT
will copy the SORTJNF1 records. Since NOSEQCK is specified, DFSORT will not check that the records are in
order by the key. (Only use NOSEQCK if you know for sure that the records are in order by the key.)

The second JOINKEYS statement defines the ddname and key for the F2 file. FILE=F2 tells DFSORT that the
ddname for the F2 file is SORTJNF2. FIELDS=(7,10,A) tells DFSORT that the key is in positions 7-16 ascending.
Since SORTED is specified, indicating that the records are already in order by the specified binary key, DFSORT
will copy the SORTJNF2 records. Since NOSEQCK is specified, DFSORT will not check that the records are in
order by the key. (Only use NOSEQCK if you know for sure that the records are in order by the key.)

The JOIN statement tells DFSORT that the joined records should include the unpaired F1 and F2 records as well as
the paired F1/F2 records.

The REFORMAT statement defines the fields to be extracted for the joined records in the order in which they are
to appear, and includes an indicator in the last position that will be set to '1' if the key is found only in the F1 file,
'2' if the key is found only in the F2 file, or 'B' if the key is found in the F1 file and in the F2 file.
FIELDS=(F1:1,14,F2:1,20,?) tells DFSORT to create the joined records as follows:

Joined Record Positions Extracted from
----------------------- -----------------
1-14 F1 positions 1-14
15-34 F2 positions 1-20
35 Indicator of where key was found

The OPTION COPY statement tells DFSORT to copy the joined records. The OUTFIL statements use the indicator
in position 35 to determine where to find the F1 or F2 fields in the joined records and where to write the fields
(F1ONLY, F2ONLY or BOTH).

Conceptually, JOINKEYS application processing proceeds as follows:

� Subtask1 copies the SORTJNF1 (F1) records as directed by the JOINKEYS statement. As a result, it copies
the unchanged SORTJNF1 records to the main task.

� Subtask2 copies the SORTJNF2 (F2) records as directed by the JOINKEYS statement. As a result, it copies
the unchanged SORTJNF2 records to the main task.

� The main task joins the records passed from subtask1 and subtask2 as directed by the specified JOINKEYS,
JOIN and REFORMAT statements, resulting in the following joined records (paired and unpaired):

30 DFSORT UK51706/UK51707

Carrie F101No Carrie F201B
David F102 1
Frank F103 1
Holly F104Yes Holly F202B
 Yes Karen F2032
 No Sri Hari F2042
Vicky F105Yes Vicky F205B

For F1 records without a match in F2 (for example, the F102 record), the indicator in position 35 has a '1'. For
F2 records without a match in F1 (for example, the F203 record), the indicator in position 35 has a '2'. For F1
records with a match in F2 (for example, the F101 and F201 records), the indicator in position 35 has a 'B'.

� The first OUTFIL statement finds records with a '1' in position 35. These are the F1 records without a match
in F2. The F1 field is in positions 1-14 of the joined record, so those positions are written to the F1ONLY file.
Thus, F1ONLY contains these records:

David F102
Frank F103

� The second OUTFIL statement finds records with a '2' in position 35. These are the F2 records without a
match in F1. The F2 field is in positions 15-34 of the joined record, so those positions are written to the
F2ONLY file. Thus, F2ONLY contains these records:

Yes Karen F203
No Sri Hari F204

� The third OUTFIL statement finds records with 'B' in position 35. These are the F1 and F2 records with a
match. The F1 field is in positions 1-14 of the joined record and the F2 field is in positions 15-34 of the
joined record, so each joined record is split into those two records and written to the BOTH file. The shorter
F1 record is padded with blanks on the right to the length of the F2 record. Thus, BOTH contains these
records:

Carrie F101
No Carrie F201
Holly F104
Yes Holly F202
Vicky F105
Yes Vicky F205

Note: If you only want one record per key in BOTH, you can have the BUILD for FNAMES=BOTH specify
the positions for just that record. For example, BUILD=(1,14) for the F1 records or BUILD=(15,20) for the F2
records.

Example 6 - Paired and unpaired F1/F2 records (FILL method)

 User Guide for DFSORT PTFs UK51706 and UK51707 31

//JKE6 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTJNF1 DD DSN=FIRST.FILE,DISP=SHR
//SORTJNF2 DD DSN=SECOND.FILE,DISP=SHR
//F1ONLY DD SYSOUT=*
//F2ONLY DD SYSOUT=*
//BOTH DD SYSOUT=*
//SYSIN DD *
* Control statements for JOINKEYS application
 JOINKEYS FILE=F1,FIELDS=(1,10,A),SORTED,NOSEQCK
 JOINKEYS FILE=F2,FIELDS=(7,10,A),SORTED,NOSEQCK
 JOIN UNPAIRED,F1,F2
 REFORMAT FIELDS=(F1:1,14,F2:1,20),FILL=C'$'
* Control statements for main task (joined records)
 OPTION COPY
 OUTFIL FNAMES=F1ONLY,INCLUDE=(15,1,CH,EQ,C'$'),
 BUILD=(1,14)
 OUTFIL FNAMES=F2ONLY,INCLUDE=(1,1,CH,EQ,C'$'),
 BUILD=(15,20)
 OUTFIL FNAMES=BOTH,INCLUDE=(15,1,CH,NE,C'$',AND,1,1,CH,NE,C'$'),
 BUILD=(1,14,/,15,20)
/*

This example illustrates an alternate way to create three output files; with paired F1/F2 records, unpaired F1 records
and unpaired F2 records. It produces the same output as Example 5. Whereas Example 5 uses an indicator in one
position to determine where the key was found, Example 6 uses a fill character in different positions to determine
where the key was found. Another drawback of the Example 6 method is that you must use a FILL character that
does not appear in either input record. The Explanation for Example 6 is the same as for Example 5 up to the
REFORMAT statement and then it differs as follows:

The REFORMAT statement defines the fields to be extracted for the joined records in the order in which they are
to appear. FIELDS=(F1:1,14,F2:1,20) tells DFSORT to create the joined records as follows:

Joined Record Positions Extracted from
----------------------- -----------------
1-14 F1 positions 1-14
15-34 F2 positions 1-20

FILL=C'$' tells DFSORT to use $ as the fill character for the F1 field in an unpaired F2 record and for the F2 field
in an unpaired F1 record. We use the FILL character to identify the unpaired records from each file; when used
for this purpose, the default of FILL=X'40' is usually not a good choice. You must select a FILL character that will
not appear in either input file.

The OPTION COPY statement tells DFSORT to copy the joined records. The OUTFIL statements use the presence
or absence of the $ fill character in certain positions to determine where to find the F1 or F2 fields in the joined
records and where to write the fields (F1ONLY, F2ONLY or BOTH).

Conceptually, JOINKEYS application processing proceeds as follows:

� Subtask1 copies the SORTJNF1 (F1) records as directed by the JOINKEYS statement. As a result, it copies
the unchanged SORTJNF1 records to the main task.

� Subtask2 copies the SORTJNF2 (F2) records as directed by the JOINKEYS statement. As a result, it copies
the unchanged SORTJNF2 records to the main task.

� The main task joins the records passed from subtask1 and subtask2 as directed by the specified JOINKEYS,
JOIN and REFORMAT statements, resulting in the following joined records (paired and unpaired):

32 DFSORT UK51706/UK51707

Carrie F101No Carrie F201
David F102$$$$$$$$$$$$$$$$$$$$
Frank F103$$$$$$$$$$$$$$$$$$$$
Holly F104Yes Holly F202
$$$$$$$$$$$$$$Yes Karen F203
$$$$$$$$$$$$$$No Sri Hari F204
Vicky F105Yes Vicky F205

For F1 records without a match in F2 (for example, the F102 record), the F2 field is filled with the FILL
character. For F2 records without a match in F1 (for example, the F203 record), the F1 field is filled with the
FILL character. For F1 records with a match in F2 (for example, the F101 and F201 records), no FILL charac-
ters are used.

� The first OUTFIL statement finds records with the FILL character in position 15. These are the F1 records
without a match in F2. The F1 field is in positions 1-14 of the joined record, so those positions are written to
the F1ONLY file. Thus, F1ONLY contains these records:

David F102
Frank F103

� The second OUTFIL statement finds records with the FILL character in position 1. These are the F2 records
without a match in F1. The F2 field is in positions 15-34 of the joined record, so those positions are written to
the F2ONLY file. Thus, F2ONLY contains these records:

Yes Karen F203
No Sri Hari F204

� The third OUTFIL statement finds records without the FILL character in position 1 or position 15. These are
the F1 and F2 records with a match. The F1 field is in positions 1-14 of the joined record and the F2 field is
in positions 15-34 of the joined record, so each joined record is split into those two records and written to the
BOTH file. The shorter F1 record is padded with blanks on the right to the length of the F2 record. Thus,
BOTH contains these records:

Carrie F101
No Carrie F201
Holly F104
Yes Holly F202
Vicky F105
Yes Vicky F205

Note: If you only want one record per key in BOTH, you can have the BUILD for FNAMES=BOTH specify
the positions for just that record. For example, BUILD=(1,14) for the F1 records or BUILD=(15,20) for the F2
records.

Using JOINKEYS with ICETOOL SORT and COPY

You can use a JOINKEYS application with a COPY or SORT operator of ICETOOL, but not with any of the other
ICETOOL operators. A new JKFROM operand can be used instead of a FROM(indd) operand for the SORT and
COPY operators to tell DFSORT you will provide a JOINKEYS statement with F1=ddname1 for the F1 file and a
JOINKEYS statement with F2=ddname2 for the F2 file, as well as JOIN and REFORMAT statements as needed.
With JKFROM, ICETOOL will use 'JOINKEYS' in the ICE606I message instead of the FROM ddname and will
terminate if a JOINKEYS application is not specified correctly.

For multiple JOINKEYS applications within a single ICETOOL step:

� You can reference different JOINKEYS F1 and F2 input files for the different SORT and/or COPY operators
by using F1=ddname and F2=ddname on the various JOINKEYS statements as appropriate

 User Guide for DFSORT PTFs UK51706 and UK51707 33

� You can reference different subtaskn message and control files for the different SORT and/or COPY operators
by using TASKID=id on the various JOINKEYS statements as appropriate.

Notes:

1. If you want to sort the joined records, use a SORT operator with USING(xxxx) in TOOLIN and a SORT
control statement along with the appropriate JOINKEYS, JOIN and REFORMAT statements in xxxxCNTL
(main task).

2. If you want to copy the joined records, use a COPY operator with USING(yyyy) in TOOLIN and the appro-
priate JOINKEYS, JOIN and REFORMAT statements in yyyyCNTL (main task).

3. If the JOINKEYS statement for F1 specifies SORTED, a copy function will be used for subtask1 automatically.
Otherwise, a sort function will be used for subtask1 automatically.

4. If the JOINKEYS statement for F2 specifies SORTED, a copy function will be used for subtask2 automatically.
Otherwise, a sort function will be used for subtask2 automatically.

Here's an example of using one SORT operator for a simple JOINKEYS application.

//JKTL1 EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//JNA DD DSN=MY.INPUTA,DISP=SHR
//JNB DD DSN=MY.INPUTB,DISP=SHR
//OUT DD SYSOUT=*
//TOOLIN DD *
* SORT operator with JOINKEYS application.
SORT JKFROM TO(OUT) USING(CTL1)
/*
//CTL1CNTL DD *
* JOINKEYS application control statements for SORT operator.
 JOINKEYS F1=JNA,FIELDS=(5,4,A)
 JOINKEYS F2=JNB,FIELDS=(11,4,A),SORTED
 REFORMAT FIELDS=(F1:1,20,F2:5,15)
* Main task control statement for SORT operator
* (operates on joined records).
 OPTION EQUALS
 SORT FIELDS=(1,3,ZD,A)
/*

Here's an example of using multiple COPY operators for JOINKEYS applications that preprocess different input
files in different ways:

34 DFSORT UK51706/UK51707

//JKTL2 EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//IN1 DD DSN=MY.IN1,DISP=SHR
//IN2 DD DSN=MY.IN2,DISP=SHR
//IN3 DD DSN=MY.IN3,DISP=SHR
//OUT1 DD SYSOUT=*
//OUT2 DD SYSOUT=*
//TOOLIN DD *
* First COPY operator with JOINKEYS application.
COPY JKFROM TO(OUT1) USING(CTL1)
* Second COPY operator with JOINKEYS application.
COPY JKFROM USING(CTL2)
/*
//CTL1CNTL DD *
* JOINKEYS application control statements for first COPY operator.
 JOINKEYS F1=IN1,FIELDS=(5,12,A),TASKID=T1
 JOINKEYS F2=IN2,FIELDS=(11,12,A),TASKID=T1
 JOIN UNPAIRED
 REFORMAT FIELDS=(F1:4,40,F2:15,20),FILL=C'$'
* Main task control statements for first COPY operator
* (operates on joined records).
 INCLUDE COND=(8,1,CH,EQ,C'Y')
/*
//CTL2CNTL DD *
* JOINKEYS application control statements for second COPY operator.
 JOINKEYS F1=IN1,FIELDS=(5,12,A),TASKID=T1
 JOINKEYS F2=IN3,FIELDS=(9,12,A),TASKID=T2,SORTED
 REFORMAT FIELDS=(F1:4,40,F2:7,20)
* Main task control statements for second COPY operator
* (operates on joined records).
OUTFIL FNAMES=OUT2,HEADER1=('Analysis Report'),REMOVECC

/*
//T1F1CNTL DD *
* Control statements for subtask1 (F1=IN1) of both COPY operators.
* Subtask1 sorts/joins on 5,12,A automatically
* per JOINKEYS statement for TASKID=T1/F1=IN1.
 INCLUDE COND=(21,3,CH,EQ,C'J82')
 SUM FIELDS=NONE
/*
//T1F2CNTL DD *
* Control statements for subtask2 (F2=IN2) of first COPY operator.
* Subtask1 sorts/joins on 11,12,A automatically
* per JOINKEYS statement for TASKID=T1/F2=IN2.
 OPTION SKIPREC=1
 INCLUDE COND=(25,3,CH,EQ,C'J82')
/*
//T2F2CNTL DD *
* Control statements for subtask2 (F2=IN3) of second COPY operator.
* Subtask1 copies/joins on 9,12,A automatically
* per JOINKEYS statement for TASKID=T2/F2=IN3/SORTED.
 INCLUDE COND=(5,3,CH,EQ,C'J82')
/*

Date Field Conversions

 User Guide for DFSORT PTFs UK51706 and UK51707 35

 Introduction

You can use the BUILD or OVERLAY operands of the INREC, OUTREC and OUTFIL statements to convert input
date fields of one type to corresponding output date fields of another type. You can convert date fields between
combinations of 2-digit and 4-digit year dates, CH/ZD and PD dates, and Julian and Gregorian dates. You can also
convert a date field to a corresponding day of the week in several forms.

 Syntax

The syntax for the date field conversions in the BUILD and OVERLAY operands is as follows:

p,m,Yxx,todate
p,m,Yxx,WEEKDAY=CHAR3/CHAR9/DIGIT1
p,m,Yxx,DT=(abcd)
p,m,Yxx,DTNS=(abc)

%nn (a parsed field) can be used wherever p,m can be used.

DFSORT Symbols can be used for p,m,Y2x and p,m,Y4x fields.

Detailed Description for Date Field Conversions

p,m,Yxx,todate

Can be used to convert an input date field of one type to a corresponding output date field of another type.

Each type of date field you can use as input for date conversion is shown in Table 1.

Table 1 (Page 1 of 2). Input fields for p,m,Yxx conversion

m,Yxx Input date

5,Y2T C'yyddd' or Z'yyddd'

6,Y2T C'yymmdd' or Z'yymmdd'

7,Y4T C'ccyyddd' or Z'ccyyddd'

8,Y4T C'ccyymmdd' or Z'ccyymmdd'

5,Y2W C'dddyy' or Z'dddyy'

6,Y2W C'mmddyy' or Z'mmddyy'

7,Y4W C'dddccyy' or Z'dddccyy'

8,Y4W C'mmddccyy' or Z'mmddccyy'

3,Y2U P'yyddd'

4,Y2V P'yymmdd'

4,Y4U P'ccyyddd'

5,Y4V P'ccyymmdd'

3,Y2X P'dddyy'

4,Y2Y P'mmddyy'

36 DFSORT UK51706/UK51707

Table 1 (Page 2 of 2). Input fields for p,m,Yxx conversion

m,Yxx Input date

4,Y4X P'dddccyy'

5,Y4Y P'mmddccyy'

todate can be one of the following:

 � TOJUL=Yaa

Converts the input date to a Julian output date.

 � TOJUL=Yaa(s)

Converts the input date to a Julian output date with s separators. s can be any character except a blank.

 � TOGREG=Yaa

Converts the input date to a Gregorian output date.

 � TOGREG=Yaa(s)

Converts the input date to a Gregorian output date with s separators. s can be any character except a blank.

The output date field created by each valid todate combination is shown in Table 2.

Table 2. TOJUL and TOGREG output date fields

Yaa TOJUL=Yaa TOJUL=Yaa(s) TOGREG=Yaa TOGREG=Yaa(s)

Y2T C'yyddd' C'yysddd' C'yymmdd' C'yysmmsdd'

Y2W C'dddyy' C'dddsyy' C'mmddyy' C'mmsddsyy'

Y2U P'yyddd' n/a n/a n/a

Y2V n/a n/a P'yymmdd' n/a

Y2X P'dddyy' n/a n/a n/a

Y2Y n/a n/a P'mmddyy' n/a

Y4T C'ccyyddd' C'ccyysddd' C'ccyymmdd' C'ccyysmmsdd'

Y4W C'dddccyy' C'dddsccyy' C'mmddccyy' C'mmsddsccyy'

Y4U P'ccyyddd' n/a n/a n/a

Y4V n/a n/a P'ccyymmdd' n/a

Y4X P'dddccyy' n/a n/a n/a

Y4Y n/a n/a P'mmddccyy' n/a

Example

* Convert a P'dddyy' input date to a C'ccyy/mm/dd' output date
 INREC BUILD=(21,3,Y2X,TOGREG=Y4T(/),X,
* Convert a C'ccyymmdd' input date to a P'ccyyddd' output date
 42,8,Y4T,TOJUL=Y4U,X,
* Convert a C'mmddyy' input date to a C'yymmdd' output date
 11,6,Y2W,TOGREG=Y2T)

 User Guide for DFSORT PTFs UK51706 and UK51707 37

p,m,Yxx,WEEKDAY=CHAR3/CHAR9/DIGIT1

Can be used to convert an input date field to a corresponding output day of the week in one of several forms.

Each type of date field you can use as input is shown in Table 1 on page 36.

The different types of output you can display are shown in Table 3.

Table 3. Output for weekdays

Day CHAR3 CHAR9 DIGIT1

Sunday C'SUN' C'SUNDAY ' C'1'

Monday C'MON' C'MONDAY ' C'2'

Tuesday C'TUE' C'TUESDAY ' C'3'

Wednesday C'WED' C'WEDNESDAY' C'4'

Thursday C'THU' C'THURSDAY ' C'5'

Friday C'FRI' C'FRIDAY ' C'6'

Saturday C'SAT' C'SATURDAY ' C'7'

Example

* Convert a P'mmddccyy' input date to a 3-character weekday
 OUTREC BUILD=(5:15,5,Y4Y,WEEKDAY=CHAR3,
* Convert a C'yyddd' input date to a 1-digit weekday
 18:27,5,Y2T,WEEKDAY=DIGIT1,
* Convert a P'dddccyy' input date to a 9-character weekday
 41:121,4,Y4X,WEEKDAY=CHAR9)

p,m,Yxx,DT=(abcd)

p,m,Yxx,DTNS=(abc)

Can be used to convert an input date field of one type to a corresponding Gregorian output date field of another
type.

Each type of date field you can use as input is shown in Table 1 on page 36.

DT=(abcd) creates an output date in the form C'adbdc', where a, b, and c indicate the order in which the month,
day, and year are to appear and whether the year is to appear as two or four digits, and d is the character to be used
to separate the month, day and year. For a, b, and c, use M to represent the month (01-12), D to represent the day
(01-31), Y to represent the last two digits of the year (for example, 09), or 4 to represent the four digits of the year
(for example, 2009). M, D, and Y or 4 can each be specified only once.

DTNS=(abc) creates an output date in the form C'abc', where a, b and c indicate the order in which the month, day,
and year are to appear and whether the year is to appear as two or four digits. For a, b and c, use M to represent
the month (01-12), D to represent the day (01-31), Y to represent the last two digits of the year (for example, 09),
or 4 to represent the four digits of the year (for example, 2009). M, D, and Y or 4 can each be specified only
once.

Example

38 DFSORT UK51706/UK51707

* Convert a C'yyddd' input date to a C'dd/mm/ccyy' output date
 OUTFIL BUILD=(92,5,Y2T,DT=(DM4/),X,
* Convert a P'ccyyddd' input date to a C'mmddyy' output date
 53:32,4,Y4U,DTNS=(MDY))

Conversion of Real Dates, Special Indicators and Invalid Dates

For CH/ZD dates (Y2T, Y4T, Y2W, Y4W), the zone and sign are ignored; only the digits are used. For example,
X'F2F0F0F9F1F2F3D0' and X'A2B0C0D9E1F21320' are treated as 20091230. For PD dates (Y2U, Y4U, Y2V,
Y4V, Y2X, Y4X, Y2Y, Y4Y), the sign is ignored; only the relevant digits are used. For example, X'120091230D'
is treated as 20091230.

For CH/ZD dates (Y2T, Y4T, Y2W, Y4W), the special indicators are X'00...00' (BI zeros), X'40...40' (blanks),
C'0...0' (CH zeros), Z'0...0' (ZD zeros), C'9...9' (CH nines), Z'9...9' (ZD nines) and X'FF...FF' (BI ones). For PD
dates (Y2U, Y4U, Y2V, Y4V, Y2X, Y4X, Y2Y, Y4Y), the special indicators are P'0...0' (PD zeros) and P'9...9' (PD
nines).

yy for real 2-digit year dates is transformed to ccyy when appropriate using the century window established by the
Y2PAST option in effect. ccyy for real 4-digit year dates is transformed to yy when appropriate by removing cc.

Date conversion is not performed for special indicators; the special indicator is just used appropriately for the output
date field. For example, if p,5,Y2T,TOGREG=Y4T(/) is used, an input yyddd special indicator of C'99999' results
in an output date field of C'9999/99/99'. However, CH/ZD special indicators of BI zeros, blanks and BI ones
cannot be converted to PD special indicators.

Conversion involving an input date with an invalid digit (A-F) will result in a data exception (0C7 ABEND) or an
incorrect output value.

Conversion involving an invalid input date or invalid output date will result in an output value of asterisks and an
informational message (issued once). A date is considered invalid if any of the following range conditions are not
met:

� yy must be between 00 and 99

� ccyy must be between 0001 and 9999

� mm must be between 01 and 12

� dd must be between 01 and 31, and must be valid for the year and month

� ddd must be 001 to 366 for a leap year, or between 001 and 365 for a non-leap year.

A date is also considered invalid if the input field is a CH/ZD special indicator of binary zeros, blanks or binary
ones, and the output field is PD.

Example 1 - Use of TOJUL, TOGREG and WEEKDAY
 OPTION COPY,Y2PAST=1996
 INREC BUILD=(1,6,Y2W,TOJUL=Y4T,X,
 1,6,Y2W,WEEKDAY=CHAR3,X,
 9,7,Y4T,TOGREG=Y4T(/),X,
 9,7,Y4T,WEEKDAY=DIGIT1)

This example illustrates how to convert an mmddyy date to a ccyyddd date and a 3-character weekday string, and
how to convert a ccyyddd date to a ccyy/mm/dd date and 1-digit weekday string.

The input records might be as follows:

 User Guide for DFSORT PTFs UK51706 and UK51707 39

120409 1999014
051895 2003235
999999 0000000
013099 1992343

The output records would be as follows:

2009338 FRI 1999/01/14 5
2095138 WED 2003/08/23 7
9999999 999 0000/00/00 0
1999030 SAT 1992/12/08 3

The Y2PAST=1996 option sets the century window to 1996-2095. The century window is used to transform yy in
the Y2W field to ccyy.

Note that date conversion is not performed for the special indicators (all 9s and all 0s); the special indicator is just
used appropriately for the output date field.

Example 2 - Identifying Invalid Date Values
 SORT FIELDS=(1,12,CH,A)
 OUTREC OVERLAY=(30:16,8,Y4T,TOGREG=Y4T)
 OUTFIL INCLUDE=(30,1,CH,EQ,C'*')

This example illustrates how to list records with dates outside of the valid range (for example, a month not between
01-12).

Note: Dates with an invalid digit (A-F) can result in a data exception (0C7 ABEND).

The input records might be as follows:

Betten 20091021
Vezinaw 20091101
Casad 00000000
Boenig 20091325
Kolusu 20090931
Yaeger 20090731

The SORT statement sorts the records by the name in positions 1-12. After the SORT statement is processed, the
sorted records will look like this:

Betten 20091021
Boenig 20091325
Casad 00000000
Kolusu 20090931
Vezinaw 20091101
Yaeger 20090731

The OUTREC statement uses TOGREG to convert each ccyymmdd value in positions 16-23 to a ccyymmdd value
in positions 30-37; the third column will be identical to the second column for valid dates and special indicators,
but will contain asterisks for invalid dates. After the OUTREC statement is processed, the reformatted records will
look like this:

40 DFSORT UK51706/UK51707

Betten 20091021 20091021
Boenig 20091325 ********
Casad 00000000 00000000
Kolusu 20090931 ********
Vezinaw 20091101 20091101
Yaeger 20090731 20090731

The OUTFIL statement selects the records that have an asterisk in position 30, that is, the records with an invalid
date. The Boenig record is invalid because mm is 13, and the Kolusu record is invalid because mm is 09 but dd is
31 (September only has 30 days). Note that the special indicator of all 0s for the Casad record is valid. The output
records would be as follows:

Boenig 20091325 ********
Kolusu 20090931 ********

Date Field Editing

You can use the BUILD or OVERLAY operands of the INREC, OUTREC and OUTFIL statements to edit and
convert 4-digit year date fields in several ways previously available for 2-digit year date fields.

The syntax for 4-digit year date field editing in the BUILD and OVERLAY operands is as follows:

p,m,Y4x<,edit/to>
p,m,Y4x(s)

%nn (a parsed field) can be used wherever p,m can be used.

DFSORT Symbols can be used for p,m,Y4x fields.

p,m,Y4x<,edit/to>

Can be used to convert a 4-digit year input date field to an output field using the edit or to items specified. Each
type of date field you can use as input and the resulting field for p,m,4x is shown in Table 4.

Table 4. Input and result fields for Y4x date editing

m,Y4x Input date Result field for p,m,Y4x

7,Y4T C'ccyyddd' or Z'ccyyddd' C'ccyyddd'

8,Y4T C'ccyymmdd' or Z'ccyymmdd' C'ccyymmdd'

7,Y4W C'dddccyy' or Z'dddccyy' C'dddccyy'

8,Y4W C'mmddccyy' or Z'mmddccyy' C'mmddccyy'

4,Y4U P'ccyyddd' C'ccyyddd'

5,Y4V P'ccyymmdd' C'ccyymmdd'

4,Y4X P'dddccyy' C'dddccyy'

5,Y4Y P'mmddccyy' C'mmddccyy'

If edit or to items are used, they are applied to the result field shown in Table 4.

 User Guide for DFSORT PTFs UK51706 and UK51707 41

The edit items are those described for p,m,f,edit in z/OS DFSORT Application Programming Guide (M0-M26,
EDIT, SIGNS, LENGTH).

The to items are those described for p,m,f,to in z/OS DFSORT Application Programming Guide (TO,LENGTH).

Example

* Convert a C'mmddccyy' date to a C'mmddccyy' date.
 OUTFIL BUILD=(34,8,Y4W,X,
* Convert a P'ccyymmdd' date to a C'ccyy-mm-dd' date.
 13,5,Y4V,EDIT=(TTTT-TT-TT),X,
* Convert a C'dddccyy' date to a 4-byte BI dddccyy value.
 61,7,Y4W,TO=BI,LENGTH=4)

p,m,Y4x(s)

Can be used to convert a 4-digit year input date field to an output date with separators. s can be any character
except a blank. Each type of date field you can use as input and the resulting field for p,m,4x(s) is shown in
Table 5.

Table 5. Input and result fields for Y4x(s) date editing

m,Y4x Input date Result field for p,m,Y4x(s)

7,Y4T C'ccyyddd' or Z'ccyyddd' C'ccyysddd'

8,Y4T C'ccyymmdd' or Z'ccyymmdd' C'ccyysmmsdd'

7,Y4W C'dddccyy' or Z'dddccyy' C'dddsccyy'

8,Y4W C'mmddccyy' or Z'mmddccyy' C'mmsddsccyy'

4,Y4U P'ccyyddd' C'ccyysddd'

5,Y4V P'ccyymmdd' C'ccyysmmsdd'

4,Y4X P'dddccyy' C'dddsccyy'

5,Y4Y P'mmddccyy' C'mmsddsccyy'

Example

* Convert a Z'dddccyy' date to a C'ddd/ccyy' date.
 OUTFIL BUILD=(19,7,Y4W(/),X,
* Convert a P'ccyymmdd' date to a C'ccyy-mm-dd' date.
 43,5,Y4V(-))

Editing of Special Indicators and Invalid Dates

For CH/ZD dates (Y4T, Y4W), the special indicators are X'00...00' (BI zeros), X'40...40' (blanks), C'0...0' (CH
zeros), Z'0...0' (ZD zeros), C'9...9' (CH nines), Z'9...9' (ZD nines) and X'FF...FF' (BI ones). For PD dates (Y4U,
Y4V, Y4X, Y4Y), the special indicators are P'0...0' (PD zeros) and P'9...9' (PD nines).

A special indicator is just edited appropriately for the output date field. For example, if p,7,Y4T(/) is used, an input
ccyyddd special indicator of C'99999999' results in an output date field of C'9999/99/99'.

Editing involving an input date with an invalid digit (A-F) can result in a data exception (0C7 ABEND) or an
incorrect output value.

42 DFSORT UK51706/UK51707

Editing involving an invalid input date can result in an invalid output value.

Example 1 - Use of Y4x(s)
 OPTION COPY
 OUTFIL BUILD=(1,4,Y4X(-))

This example illustrates how a P'dddccyy' date can be edited to a C'ccyy-ddd' date. For example, if an input record
has a PD value of 2342008 in positions 1-4, the output record will have a character value of 2008-234 in positions
1-8.

 MERGE Operator

 Introduction

MERGE is a new ICETOOL operator that allows you to merge up to 50 input data sets that are already in order by
the same keys. Various options of MERGE allow you to define the ddnames for the input and output data sets and
the MERGE and other DFSORT control statements to be used for the MERGE operation.

As an example, you could use the following ICETOOL step to merge four input data sets to a single output data
set.

//MRG1 EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//IN1 DD DSN=MY.INPUT1,DISP=SHR
//IN2 DD DSN=MY.INPUT2,DISP=SHR
//IN3 DD DSN=MY.INPUT3,DISP=SHR
//IN4 DD DSN=MY.INPUT4,DISP=SHR
//OUT DD DSN=MY.OUTPUT1,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,SPACE=(CYL,(5,5))
//TOOLIN DD *
MERGE FROM(IN1,IN2,IN3,IN4) TO(OUT) USING(CTL1)

//CTL1CNTL DD *
 MERGE FIELDS=(11,8,ZD,A)

 Syntax

The syntax for the MERGE operator is as follows:

MERGE FROM(indd<,indd>...) <FROM(indd<,indd>...)> ... USING(xxxx)
 <TO(outdd<,outdd>...)> <VSAMTYPE(x)>
 <LOCALE(name/CURRENT/NONE)> <SERIAL>

 Detailed Description

Merges up to 50 input data sets to an output data set. The records in each input data set to be merged must already
be in sorted order as specified by the control fields in a supplied DFSORT MERGE statement.

You must specify at least one FROM operand and a USING(xxxx) operand. Each FROM operand can be used to
specify one or more ddnames. You can specify up to 10 FROM operands. The maximum number of ddnames in
all of the FROM operands must not exceed 50.

 User Guide for DFSORT PTFs UK51706 and UK51707 43

DFSORT is called to merge the indd data sets to the outdd data sets using the DFSORT control statements in
xxxxCNTL. You must supply a DFSORT MERGE statement in the xxxxCNTL data set to indicate the control
fields for the merge. You can use additional DFSORT statements in the xxxxCNTL data set to merge a subset of
the input records (INCLUDE or OMIT statement; OUTFIL INCLUDE, OMIT, SAVE, STARTREC, ENDREC,
SAMPLE, SPLIT, SPLITBY and SPLIT1R operands), reformat records for output (INREC, OUTREC, and OUTFIL
statements; user exit routines), and so on.

If EQUALS is in effect, records that collate identically are output in the order of their ddnames in the FROM
operands.

When ICETOOL is called using the parameter list interface, the 1-byte operation status indicator in the Return Area
will be set to 0 or 4 for a MERGE operator in the same way as for existing operators. No operation specific values
are returned for MERGE.

The active locale's collating rules affect MERGE, INCLUDE and OMIT processing as explained in z/OS DFSORT
Application Programming Guide.

Note: For a merge application, records deleted during an E35 exit routine are not sequence checked. If you use an
E35 exit routine without an output data set, sequence checking is not performed at the time the records are passed
to the E35 user exit; therefore, you must ensure that input records are in correct sequence.

The operands described below can be specified in any order:

 � FROM(indd,...)

Specifies the ddnames of the input data sets to be read by DFSORT for this operation. Up to 10 FROM
operands can be used to specify up to 50 input ddnames. An indd DD statement must be present for each indd
name specified. Each indd input data set must conform to the rules for DFSORT's SORTINnn data sets.

 � USING(xxxx)

Specifies the first 4 characters of the ddname for the control statement data set to be used by DFSORT for this
operation. xxxx must be four characters that are valid in a ddname of the form xxxxCNTL. xxxx must not be
SYSx.

An xxxxCNTL DD statement must be present, and the control statements in it must conform to the rules for
DFSORT's SORTCNTL data set.

The xxxxCNTL data set must contain a MERGE statement. If TO is not specified, the xxxxCNTL data set
must also contain either one or more OUTFIL statements or a MODS statement for an E35 routine that dis-
poses of all records. Other statements are optional.

 � TO(outdd,...)

Specifies the ddnames of the output data sets to be written by DFSORT for this operation. From 1 to 10 outdd
names can be specified. An outdd DD statement must be present for each outdd name specified. If a single
outdd data set is specified, DFSORT is called once to merge the indd data sets to the outdd data set using
SORTOUT processing; the outdd data set must conform to the rules for DFSORT's SORTOUT data set. If
multiple outdd data sets are specified and SERIAL is not specified, DFSORT is called once to merge the indd
data sets to the outdd data sets using OUTFIL processing; the outdd data sets must conform to the rules for
DFSORT's OUTFIL data sets.

A ddname specified in a FROM operand must not also be specified in the TO operand.

 � VSAMTYPE(x)

Specifies the record type for a VSAM input data set. x must be either F for fixed-length record processing or
V for variable-length record processing.

44 DFSORT UK51706/UK51707

If VSAMTYPE(x) is specified, ICETOOL will pass a RECORD TYPE=x control statement to DFSORT. (If
you specify a RECORD TYPE=x statement in the xxxxCNTL data set, it will override the one passed by
ICETOOL.)

 � LOCALE(name)

Specifies that locale processing is to be used and designates the name of the locale to be made active during
DFSORT processing. LOCALE(name) can be used to override the LOCALE installation option. For complete
details on LOCALE(name), see the discussion of the LOCALE operand in z/OS DFSORT Application Program-
ming Guide.

 � LOCALE(CURRENT)

Specifies that locale processing is to be used, and the current locale active when DFSORT is entered will
remain the active locale during DFSORT processing. LOCALE(CURRENT) can be used to override the
LOCALE installation option. For complete details on LOCALE(name), see the discussion of the LOCALE
operand in z/OS DFSORT Application Programming Guide.

 � LOCALE(NONE)

Specifies that locale processing is not to be used. DFSORT will use the binary encoding of the code page
defined for your data for collating and comparing. LOCALE(NONE) can be used to override the LOCALE
installation option. For complete details on LOCALE(name), see the discussion of the LOCALE operand in
z/OS DFSORT Application Programming Guide.

 � SERIAL

Specifies that OUTFIL processing is not to be used when multiple outdd data sets are specified. DFSORT is
called multiple times and uses SORTOUT processing; the outdd data sets must conform to the rules for
DFSORT's SORTOUT data set. SERIAL is not recommended because the use of serial processing (that is,
multiple calls to DFSORT) instead of OUTFIL processing can degrade performance and imposes certain
restrictions as detailed below. SERIAL is ignored if a single outdd data set is specified.

DFSORT is called to merge the indd data set to the first outdd data set using the DFSORT control statements
in the xxxxCNTL data set. If the merge operation is successful, DFSORT is called as many times as necessary
to copy the first outdd data set to the second and subsequent outdd data sets. Therefore, for maximum effi-
ciency, use a disk data set as the first in a list of outdd data sets on both disk and tape. If more than one outdd
data set is specified, DFSORT must be able to read the first outdd data set after it is written in order to copy it
to the other outdd data sets. Do not use a SYSOUT or DUMMY data set as the first in a list of outdd data sets
because:

– If the first data set is SYSOUT, DFSORT abends when it tries to copy the SYSOUT data set to the second
outdd data set.

– If the first data set is DUMMY, DFSORT copies the empty DUMMY data set to the other outdd data sets
(that is, all of the resulting outdd data sets are empty).

Example 1 - MERGE five input files to one output file
//TOOLIN DD *
MERGE FROM(IN01,IN02,IN03,IN04,IN05) TO(OUTPUT) USING(MERG)
//MERGCNTL DD *
 OPTION EQUALS
 MERGE FIELDS=(21,4,CH,A)
/*

This example merges 5 input files to an output file. EQUALS is used to ensure that records that collate identically
are output in the order specified in the FROM operand. For example, if IN01, IN03 and IN05 all have records with
a key or 'AAAA' in positions 21-24, the output will contain the 'AAAA' record from IN01, the 'AAAA' record from
IN03 and the 'AAAA' record from IN05, in that order.

 User Guide for DFSORT PTFs UK51706 and UK51707 45

Example 2 - Merge seven input files to two output files
//TOOLIN DD *
MERGE FROM(INPUT1,INPUT2,INPUT3,INPUT4) -

FROM(INPUT5,INPUT6,INPUT7) VSAMTYPE(F) USING(MRG1)
//MRG1CNTL DD *
 MERGE FIELDS=(52,8,UFF,D)
 OUTFIL FNAMES=OUT1,INCLUDE=(15,3,SS,EQ,C'D21,D33')
 OUTFIL FNAMES=OUT2,SAVE
/*

This example merges 7 input files to 2 output files. It uses two OUTFIL statements to create the two output files;
each output file will have a different subset of the merged records. VSAMTYPE(F) tells DFSORT the record type
is F (only needed for VSAM input files).

MERGEIN alternate ddnames

 Introduction

A new MERGEIN operand can be specified on an OPTION statement to supply alternate ddnames for the input
data sets used for a MERGE application. If MERGEIN is passed in DFSPARM or an extended parameter list, the
specified ddnames will be used instead of the default SORTINnn ddnames. Up to 100 ddnames can be specified
with MERGEIN.

Note: If MERGEIN is passed in SYSIN or SORTCNTL, the specified ddnames will not be used (instead,
SORTINnn ddnames will be used).

 Syntax

The syntax for MERGEIN is as follows:

 OPTION MERGEIN=(ddname<,ddname>...)

 Detailed Description

Specifies up to 100 ddnames to be be used for a MERGE application instead of the SORTINnn ddnames. This
allows you to use any valid alternate ddnames for the MERGE data sets.

If EQUALS is in effect, records that collate identically are output in the order of their ddnames in the MERGEIN
list.

Each ddname can be 1 through 8 characters. If a ddname is specified more than once in the MERGEIN operand, it
will only be used once. If more than 100 unique ddnames are specified in the MERGEIN operand, only the first
100 will be used. Do not use ddnames reserved for use by DFSORT, such as SYSOUT, ccccOUT, ccccWKd,
ccccWKdd, ccccDKd, or ccccDKdd, where cccc is the specified or defaulted value for the SORTDD operand and d
is any character. Do not use the same ddnames for MERGEIN and OUTFIL.

Note: MERGEIN is processed only if it is passed on the OPTION control statement in an extended parameter list,
or in DFSPARM.

Default: SORTINnn, unless SORTDD=cccc is specified in an extended parameter list or in DFSPARM, in which
case ccccINnn is the default.

46 DFSORT UK51706/UK51707

Example 1 - Use of three alternate ddnames for MERGE
//S1 EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SARA DD *
AAA FROM SARA
CCC FROM SARA
DDD FROM SARA
//MOLLY DD *
AAA FROM MOLLY
BBB FROM MOLLY
DDD FROM MOLLY
//NORA DD *
AAA FROM NORA
BBB FROM NORA
CCC FROM NORA
//SORTOUT DD SYSOUT=*
//DFSPARM DD *
 OPTION EQUALS,MERGEIN=(NORA,SARA,MOLLY)
 MERGE FIELDS=(1,3,CH,A)
/*

This example illustrates the use of the alternate ddnames NORA, SARA and MOLLY for a MERGE application
instead of SORTINnn ddnames. Since EQUALS is specified, equally collating records will be from NORA, then
SARA, then MOLLY, that is, in the order specified in the MERGEIN list. Thus, SORTOUT contains these
records:

AAA FROM NORA
AAA FROM SARA
AAA FROM MOLLY
BBB FROM NORA
BBB FROM MOLLY
CCC FROM NORA
CCC FROM SARA
DDD FROM SARA
DDD FROM MOLLY

If MERGEIN=(SARA,MOLLY,NORA) was specified in the MERGEIN list in DFSPARM, SORTOUT would
contain these records:

AAA FROM SARA
AAA FROM MOLLY
AAA FROM NORA
BBB FROM MOLLY
BBB FROM NORA
CCC FROM SARA
CCC FROM NORA
DDD FROM SARA
DDD FROM MOLLY

 New Messages

This section shows messages that have been added for PTFs UK51706 and UK51707. Refer to z/OS DFSORT
Messages, Codes and Diagnosis Guide for general information on DFSORT messages.

 User Guide for DFSORT PTFs UK51706 and UK51707 47

 ICE288I

ICE288I INPUT OR OUTPUT DATE VALUE OUT OF RANGE FOR DATE CONVERSION

Explanation: For a date conversion operation using TOJUL, TOGREG, WEEKDAY, DT or DTNS, an invalid
input date was used.

A date value is considered invalid if any of the following range conditions are not met:

� yy must be between 00 and 99

� ccyy must be between 0001 and 9999

� mm must be between 01 and 12

� dd must be between 01 and 31, and must be valid for the year and month

� ddd must be 001 to 366 for a leap year, or between 001 and 365 for a non-leap year.

A date is also considered invalid if the input field is a CH/ZD special indicator of binary zeros, blanks or binary
ones, and the output field is PD.

System Action: Asterisks are printed for each invalid output value. The message is only issued once. Processing
continues.

Programmer Response: Check for output values containing asterisks and ensure that the input date value is valid
and that you are not converting a CH/ZD special indicator of binary zeros, blanks or binary ones to a PD value.

 ICE400A

ICE400A INVALID JOINKEYS, JOIN OR REFORMAT STATEMENT OPERAND

Explanation: Critical. An invalid keyword operand was detected on a JOINKEYS, JOIN or REFORMAT control
statement.

System Action: The program terminates.

Programmer Response: Make sure the JOINKEYS, JOIN or REFORMAT control statement contains only valid
keyword operands.

 ICE401A

ICE401A DUPLICATE JOINKEYS, JOIN OR REFORMAT STATEMENT OPERAND

Explanation: Critical. One of the following errors was found:

� On a JOINKEYS, JOIN or REFORMAT statement, a keyword was specified twice.

� On a JOINKEYS statement, more than one of FILE=F1, FILES=F1, F1=ddname, FILE=F2, FILES=F2 or
F2=ddname was specified.

� On a JOINKEYS statement, INCLUDE and OMIT were both specified.

System Action: The program terminates.

48 DFSORT UK51706/UK51707

Programmer Response: Check the JOINKEYS, JOIN or REFORMAT control statement for the errors indicated in
the explanation and correct the error.

 ICE402A

ICE402A JOINKEYS STATEMENT FOR Fn WAS REQUIRED, BUT NOT FOUND

Explanation: Critical. A JOINKEYS application was requested by a JOINKEYS, JOIN or REFORMAT state-
ment, or a JKFROM operand (ICETOOL COPY or SORT), but a JOINKEYS statement for file F1 or file F2, as
indicated, was not found.

System Action: The program terminates.

Programmer Response: Supply two JOINKEYS statements; one for F1 (with FILE=F1, FILES=F1 or
F1=ddname) and another for F2 (with FILE=F2, FILES=F2 or F2=ddname).

 ICE403A

ICE403A OPERAND keyword WAS REQUIRED FOR verb STATEMENT, BUT NOT FOUND

Explanation: Critical. The indicated required keyword was missing for the indicated control statement as follows:

� For a JOINKEYS statement, FILE=F1, FILES=F1, FILE=F2, FILES=F2, F1=ddname or F2=ddname must be
specified.

� For a JOINKEYS statement, FIELDS must be specified.

� For a JOIN statement, UNPAIRED must be specified.

� For a REFORMAT statement, FIELDS must be specified.

System Action: The program terminates.

Programmer Response: Specify the indicated keyword for the indicated control statement.

 ICE404A

ICE404A REFORMAT STATEMENT WAS REQUIRED, BUT NOT FOUND

Explanation: Critical. A JOIN statement with an ONLY operand was not specified, so a REFORMAT statement
is required. However, a REFORMAT statement was not found.

System Action: The program terminates.

Programmer Response: Either specify a JOIN statement with the ONLY operand, or specify a REFORMAT
statement, as appropriate.

 ICE405A

ICE405A JOINKEYS STATEMENTS HAD MISMATCH IN NUMBER, LENGTH OR ORDER OF KEYS

Explanation: Critical. The keys (p,m,s) specified in the FIELDS operands of the JOINKEYS statements for F1
and F2 did not match in one or more of the following ways:

 User Guide for DFSORT PTFs UK51706 and UK51707 49

� The two FIELDS operands have different numbers of keys. For example, FIELDS for F1 has two keys and
FIELDS for F2 has three keys.

� Corresponding keys in the two FIELDS operands have different lengths. For example, the second key for F1
has a length of 5 and the second key for F2 has a length of 6.

� Corresponding keys in the two FIELDS operands have different orders. For example, the third key for F1 has
ascending order (A) and the third key for F2 has descending order (D).

System Action: The program terminates.

Programmer Response: Ensure that the FIELDS operands of the JOINKEYS statements for F1 and F2 have the
same number of keys, and that corresponding keys have the same length and order.

 ICE406A

ICE406A JOINKEYS STATEMENT FIELD ENDS AFTER POSITION 32752

Explanation: Critical. The last byte of the key (p,m,s) in a JOINKEYS FIELDS operand ended beyond position
32752. Each key must end at or before position 32752 (position plus length must not be greater than 32753). For
example, 32752,1,A is valid because it ends at position 32752, but 32752,2,A is invalid because it ends at position
32753.

System Action: The program terminates.

Programmer Response: Ensure that each key in the JOINKEYS FIELDS operand ends at or before position
32752.

 ICE407A

ICE407A JOINKEYS STATEMENT HAD TOTAL KEY LENGTH GREATER THAN 4080 BYTES

Explanation: Critical. The total length of all of the keys (p,m,s) in a JOINKEYS FIELDS operand exceeded the
limit of 4080 bytes.

System Action: The program terminates.

Programmer Response: Ensure that the total length of all of the keys in the JOINKEYS FIELDS operand is less
than or equal to 4080 bytes.

 ICE408A

ICE408A MERGE FUNCTION CANNOT BE USED WITH JOINKEYS MAIN TASK

Explanation: Critical. A MERGE FIELDS=(p,m,s,...) statement was found for the main task of a JOINKEYS
application in SYSIN, SORTCNTL, DFSPARM or a parameter list. A MERGE function cannot be used with
JOINKEYS.

System Action: The program terminates.

Programmer Response: Replace the MERGE FIELDS=(p,m,s,...) statement with a MERGE FIELDS=COPY,
SORT FIELDS=COPY, OPTION COPY or SORT FIELDS=(p,m,s,...) statement, as appropriate.

50 DFSORT UK51706/UK51707

 ICE409A

ICE409A INSUFFICIENT STORAGE FOR JOINKEYS APPLICATION - ADD AT LEAST nMB

Explanation: Critical. DFSORT could not get the additional nMB of storage needed for this JOINKEYS applica-
tion.

System Action: The program terminates.

Programmer Response: Add at least nMB to the storage available to DFSORT (for example, increase the
REGION size).

 ICE410A

ICE410A JOINKEYS APPLICATION TERMINATED - SEE ddname MESSAGES

Explanation: Critical. This message is issued by subtask1 (for file F1) or subtask2 (for file F2) of a JOINKEYS
application to indicate that the main task terminated. ddname is the ddname associated with the message data set
for the main task.

System Action: The program terminates.

Programmer Response: See the messages in the indicated ddname data set for information about the main task.
Correct the error that caused the main task to terminate.

 ICE411I

ICE411I THIS IS THE JOINKEYS MAIN TASK FOR JOINING F1 AND F2

Explanation: Indicates this is the main task for a JOINKEYS application. The main task processes the joined
records from input files F1 and F2 and writes the output.

System Action: None.

Programmer Response: None.

 ICE412A

ICE412A REFORMAT REQUIRES RDW IN FIRST FIELD

Explanation: Critical. The FIELDS operand of the REFORMAT statement has a position without a length (p
without m) as its last field, but the first field does not include the RDW (1,n with n equal to or greater than 4). For
example, the REFORMAT statement is:

 REFORMAT FIELDS=(F1:5,8,F2:1,20,F1:15)

instead of:

 REFORMAT FIELDS=(F1:1,8,F2:1,20,F1:15)

or the REFORMAT statement is:

 REFORMAT FIELDS=(?,F1:1,4,5)

instead of:

 User Guide for DFSORT PTFs UK51706 and UK51707 51

 REFORMAT FIELDS=(F1:1,4,?,F1:5)

System Action: The program terminates.

Programmer Response: Include the RDW (1,n with n equal to or greater than 4) in the first field, or do not use a
position without a length, as appropriate.

 ICE413A

ICE413A REFORMAT REQUIRES TYPE=V FILE FOR RDW AND VARIABLE FIELDS

Explanation: Critical. The FIELDS operand of the REFORMAT statement has a position without a length (p
without m) as its last field, but has one of the following errors:

� F1: is used for the first field (which includes the RDW), but F1 does not refer to a TYPE=V file.

� F2: is used for the first field (which includes the RDW), but F2 does not refer to a TYPE=V file.

� F1: is used for a position without length field, but F1 does not refer to a TYPE=V file.

� F2: is used for a position without length field, but F2 does not refer to a TYPE=V file.

For example, SORTJNF1 for F1 has RECFM=FB and SORTJNF2 for F2 has RECFM=VB and the REFORMAT
statement is:

 REFORMAT FIELDS=(F1:1,20,F2:5,6,15)

instead of:

 REFORMAT FIELDS=(F2:1,4,F1:1,20,F2:5,6,15)

System Action: The program terminates.

Programmer Response: Ensure that the file (F1 or F2) used for the first field, and for each position without
length field, is a TYPE=V file.

 ICE414A

ICE414A ddname (Fn) type FIELD END AT p IS BEYOND LENGTH OF n

Explanation: Critical. A JOINKEYS or REFORMAT statement specifies a field which ends beyond the
maximum record length. The information displayed in the message is as follows:

� the ddname of the input file with the field in error.

� the file (F1 or F2) with the field in error.

� the type of field in error as follows:

– KEY to indicate a field in the FIELDS operand of a JOINKEYS statement.

– INCLUDE to indicate a field in the INCLUDE operand of a JOINKEYS statement.

– OMIT to indicate a field in the OMIT operand of a JOINKEYS statement.

– REFORMAT to indicate a field in the FIELDS operand of a REFORMAT statement.

� the position (p) at which the field ends.

� the maximum record length (n) which the ending position exceeded.

52 DFSORT UK51706/UK51707

System Action: The program terminates.

Programmer Response: Ensure that all fields specified in JOINKEYS and REFORMAT statements are contained
within the maximum record length indicated.

 ICE415A

ICE415A TYPE=x JOINED RECORD LENGTH OF n EXCEEDS MAXIMUM OF m

Explanation: Critical. The maximum length (n) of the joined records for a JOINKEYS application, as defined by
the REFORMAT statement or by default if a REFORMAT statement was not specified, exceeds the maximum
length (m) of 32760 for TYPE=F records or 32767 for TYPE=V records.

System Action: The program terminates.

Programmer Response: Reduce the maximum length of the joined records so it does not exceed the maximum
length of 32760 for TYPE=F records or 32767 for TYPE=V records.

Note that the maximum LRECL for RECFM=VB records is 32756 and the maximum LRECL for RECFM=VBS
records is 32767; if you want RECFM=VBS records, ensure that RECFM is specified appropriately for the output
data set.

 ICE416I

ICE416I JOINKEYS IS USING THE Fn SUBTASK FOR ddname1 - SEE ddname2 MESSAGES

Explanation: Indicates DFSORT is using a subtask to process the Fn (F1 or F2) file for a JOINKEYS application.
ddname1 is the ddname associated with the input file for the subtask. ddname2 is the ddname associated with the
message data set for the subtask.

System Action: None.

Programmer Response: See the messages in the indicated ddname2 data set for information about the subtask.

 ICE417I

ICE417I THIS IS THE JOINKEYS Fn SUBTASK FOR ddname

Explanation: Indicates this is a subtask used to process the Fn (F1 or F2) file for a JOINKEYS application. The
subtask passes the needed Fn fields to the main task. ddname is the ddname for the input file associated with the
subtask.

System Action: None.

Programmer Response: None.

 User Guide for DFSORT PTFs UK51706 and UK51707 53

 ICE418A

ICE418A JOINKEYS Fn SUBTASK FOR ddname1 TERMINATED - SEE ddname2 MESSAGES

Explanation: Critical. This message is issued by the main task of a JOINKEYS application to indicate that the
subtask used to process file Fn (F1 or F2) terminated. ddname1 is the ddname associated with the input file for the
subtask. ddname2 is the ddname associated with the message data set for the subtask.

System Action: The program terminates.

Programmer Response: See the messages in the ddname2 data set for information about the subtask. Correct the
error that caused the subtask to terminate.

 ICE419I

ICE419I JOINED RECORDS: TYPE=x, LENGTH=n

Explanation: Indicates the record type (F or V) and maximum record length (n) of the joined records passed as
input to the main task of a JOINKEYS application.

System Action: None.

Programmer Response: None.

 ICE420A

ICE420A COULD NOT ALLOCATE ddname FOR Fn MESSAGES - SUPPLY DD STATEMENT

Explanation: Critical. For a JOINKEYS application, a required message data set was not found and could not be
dynamically allocated. A DD statement for the indicated ddname was required for the messages associated with the
subtask for the F1 or F2 file. A DD statement for that ddname was not found, so DFSORT attempted to dynam-
ically allocate a SYSOUT=* message data set. However, the message data set could not be allocated.

System Action: The program terminates.

Programmer Response: Supply a message data set using a DD statement for the indicated ddname.

 ICE421I

ICE421I JOINED RECORDS: COUNT=n

Explanation: Indicates the number (n) of joined records passed as input to the main task of a JOINKEYS applica-
tion.

System Action: None.

Programmer Response: None.

54 DFSORT UK51706/UK51707

 ICE422I

ICE422I JOINKEYS STATEMENT FOR Fn FOUND PREVIOUSLY - THIS STATEMENT IGNORED

Explanation: A JOINKEYS statement for the indicated file (F1 or F2) was found previously in this source (for
example, SYSIN) or in a higher source (for example, DFSPARM is higher than SYSIN). The second and subse-
quent JOINKEYS statement for F1 or F2 in the same source or in a lower source is ignored.

System Action: None.

Programmer Response: Correct the conflicting JOINKEYS statements, if appropriate.

 ICE423A

ICE423A REFORMAT STATEMENT FIELD ENDS AFTER POSITION 32767

Explanation: Critical. The last byte of a field (p,m) in a REFORMAT FIELDS operand ended beyond position
32767. Each field must end at or before position 32767 (position plus length must not be greater than 32768). For
example, 32767,1 is valid because it ends at position 32767, but 32767,2 is invalid because it ends at position
32768.

System Action: The program terminates.

Programmer Response: Ensure that each field in the REFORMAT FIELDS operand ends at or before position
32767.

 ICE424A

ICE424A ddname (Fn) KEY IS OUT OF SEQUENCE

Explanation: Critical. The SORTED operand was specified without the NOSEQCK operand on the JOINKEYS
statement associated with the indicated ddname for file F1 or F2. DFSORT checked the records of the indicated
file and found a record out of sequence for the keys specified in the FIELDS operand of the JOINKEYS statement.

System Action: The program terminates.

Programmer Response: Remove the SORTED operand from the JOINKEYS statement for the indicated file (F1
or F2) to force DFSORT to sort that file by the specified keys.

 ICE425A

ICE425A ddname CANNOT BE USED AS DDNAME FOR BOTH F1 AND F2

Explanation: Critical. The indicated ddname was used on the JOINKEYS statements for both file F1 and F2 (for
example, one JOINKEYS statement has F1=IN1 and the other JOINKEYS statement has F2=IN1). Different
ddnames must be used for the two files.

System Action: The program terminates.

Programmer Response: Change the F1, F2 or FILE operand in one or both of the JOINKEYS statements to use
different ddnames for the two files.

 User Guide for DFSORT PTFs UK51706 and UK51707 55

 ICE426A

ICE426A cccc CANNOT BE USED AS PREFIX FOR JOINKEYS MAIN TASK AND SUBTASK

Explanation: Critical. For a JOINKEYS application, the SORTDD value for the main task and the TASKID value
for a subtask resulted in the same four character prefix indicated by cccc (for example, SORTDD=MYF1 and
TASKID=MY both result in a prefix of MYF1). Different prefixes must be used for the main task and the sub-
tasks.

System Action: The program terminates.

Programmer Response: Change the SORTDD operand for the main task, or the TASKID operand for the subtask,
to use different prefixes.

 ICE427A

ICE427A verb STATEMENT CANNOT BE USED WITH JOINKEYS SUBTASK

Explanation: Critical. For a JOINKEYS application, a JOINKEYS, JOIN, MERGE, OUTFIL, OUTFILE,
OUTREC, REFORMAT or SORT statement was found in JNF1CNTL for subtask1 or in JNF2CNTL for subtask2.
These statements cannot be used for a JOINKEYS subtask.

System Action: The program terminates.

Programmer Response: Remove all statements that cannot be used for a JOINKEYS subtask from JNF1CNTL or
JNF2CNTL.

 ICE428A

ICE428A TOO MANY DUPLICATES OF ONE KEY IN ddname (F2)

Explanation: Critical. The F2 file associated with the indicated ddname contained more duplicates for a single
key than DFSORT could process with the storage available.

System Action: The program terminates.

Programmer Response: If possible, increase the storage available to DFSORT (for example, try specifying
REGION=0M). Alternatively, if the maximum duplicates for a single key in file F1 is less than the maximum
duplicates for a single key in file F2, reverse F1 and F2. For example, if you received this error with these control
statements:

 JOINKEYS F1=IN1,FIELDS=(11,4,A)
 JOINKEYS F2=IN2,FIELDS=(21,4,A)
 REFORMAT FIELDS=(F1:1,20,F2:5,30)

and the maximum duplicates for a single F1 key is less than the maximum duplicates for a single F2 key, use these
control statements instead:

 JOINKEYS F1=IN2,FIELDS=(21,4,A)
 JOINKEYS F2=IN1,FIELDS=(11,4,A)
 REFORMAT FIELDS=(F2:1,20,F1:5,30)

56 DFSORT UK51706/UK51707

 ICE429A

ICE429A JOINKEYS APPLICATION IS ONLY ALLOWED WITH SORT OR COPY OPERATOR

Explanation: Critical. A JOINKEYS, JOIN or REFORMAT statement was specified for an ICETOOL operator
other than SORT or COPY. A JOINKEYS application is only allowed for a SORT or COPY operator, not for any
of the other operators.

System Action: The program terminates.

Programmer Response: Redesign the application to not use JOINKEYS, JOIN or REFORMAT with ICETOOL
operators other than SORT or COPY.

 ICE657A

ICE657A TOO MANY FROM DDNAMES FOR MERGE

Explanation: Critical. The maximum of 50 FROM ddnames was exceeded for this MERGE operation.

System Action: The operation is terminated.

Programmer Response: A $ marks the point at which the error was detected. Reduce the number of FROM
ddnames for this MERGE operator to 50 or less. Use additional MERGE operators to handle all of the data sets
required.

 ICE658A

ICE658A MERGE FUNCTION IS REQUIRED FOR MERGE OPERATION

Explanation: Critical. A DFSORT MERGE statement was not found for this MERGE operator, but you must
supply a MERGE statement with a MERGE operator.

System Action: The operation is terminated.

Programmer Response: Specify a MERGE statement in the xxxxCNTL data set corresponding to the
USING(xxxx) operand for this MERGE operator. Ensure that the MERGE statement is not overridden by a SORT
statement, an OPTION COPY statement, or a MERGE FIELDS=COPY statement.

 Changed Messages

This section shows existing messages that have been changed significantly for PTFs UK51706 and UK51707.
Refer to z/OS DFSORT Messages, Codes and Diagnosis Guide for general information on DFSORT messages.

 ICE005A

JOINKEYS, JOIN and REFORMAT are added to the list of operation definers.

 User Guide for DFSORT PTFs UK51706 and UK51707 57

ICE018A, ICE113A, ICE114A

These messages will be issued for the INCLUDE and OMIT operands of a JOINKEYS statement for the same
reasons they are issued for the INCLUDE and OMIT operands of an OUTFIL statement.

 ICE022A

This message will be issued for the TYPE operand of a JOINKEYS statement for the same reasons it is issued for
the TYPE operand of a RECORD statement.

 ICE039A

For a JOINKEYS application, try using REGION=0M.

 ICE054I

For a JOINKEYS subtask, 0 is always displayed for OUT. The number of joined records is displayed in message
ICE421I for the main task.

 ICE056A

This message will be issued for a JOINKEYS operation when a DD statement identified in the FILE=F1,
FILES=F1, F1=ddname, FILE=F2, FILES=F2 or F2=ddname operand of a JOINKEYS statement is not supplied.
The F1 ddname is SORTJNF1 (or ccccJNF1 if SORTDD=cccc is in effect) if FILE=F1 or FILES=F1 is specified.
The F2 ddname is SORTJNF2 (or ccccJNF2 if SORTDD=cccc is in effect) if FILE=F2 or FILES=F2 is specified.

This message can also be issued when a ddname specified in a MERGEIN operand is not supplied or is the same as
the SORTOUT ddname.

 ICE068A

ICE068A OUT OF SEQUENCE {ddname|SORTINnn}

OUT OF SEQ SORTINnn

Explanation: Critical. During a merge, a data set was found to be out of sequence.

If Blockset was selected:

� If input was not supplied through exit E32, ddname is the ddname associated with the data set which was found
to be out of sequence

� If input was supplied through user exit E32, SORTINnn identifies the file which was found to be out of
sequence. 00 signifies the first input file, 01 the second, and so on.

If Blockset was not selected:

� If input was not supplied through exit E32, SORTINnn is the ddname associated with the data set which was
found to be out of sequence

� If input was supplied through user exit E32, SORTINnn identifies the file which was found to be out of
sequence. 01 signifies the first input file, 02 the second, and so on.

58 DFSORT UK51706/UK51707

System Action: The operation is terminated.

Programmer Response: If a user-written routine was modifying the records, check the routine thoroughly. It
should not modify control fields at user exit E35. If a user-written routine is not being used, make sure that all
input data sets have been sorted on the same control fields, in the same order, and that they all have a similar
format. Check whether you have also received message ICE072I.

If input was supplied through user exit E32, check your routine to make sure records are passed to the merge from
the correct file.

If you were reading in variable-length VSAM records through user exit E32, check the format and accuracy of the
record descriptor word (RDW) you built at the beginning of each record.

If Blockset was not selected, rerun the job with a SORTDIAG DD statement to get message ICE800I, which indi-
cates the reason Blockset could not be used. If possible, remove the condition preventing the use of Blockset.

ICE083A, ICE098I, ICE118I, ICE253I, ICE254I, ICE258I, ICE298I

If the information in any of these messages indicates you should specify AVGRLEN=n, FILSZ=En, DYNSPC=n or
DYNALLOC=(,n) for a JOINKEYS operation, you can supply the needed parameters as follows:

� In DFSPARM for the JOINKEYS main task.

� In JNF1CNTL for the JOINKEYS F1 subtask.

� In JNF2CNTL for the JOINKEYS F2 subtask.

 ICE111A

This message will be issued for the following additional situations:

� DT=(abcd) or DTNS=(abc) was specified with a, b or c not M, D, Y or 4, with M, D, Y or 4 specified more
than once, or with Y and 4 both specified.

� The length (m for p,m or FIXLEN=m for %nn) for a Y4 format field was not 7-8 for Y4T or Y4W, 4 for Y4U
or Y4X, or 5 for for Y4V or Y4Y.

 ICE151A, ICE221A

These messages will be issued for the INCLUDE and OMIT operands of a JOINKEYS statement for the same
reasons they are issued for the COND operand of an INCLUDE or OMIT statement.

 ICE189A

This message will be issued for the following additional situations if Blockset could not be used:

 � JOINKEYS operation

 � Y4x format

 � MERGEIN processing

 ICE217A

The appropriate MERGE ddname is now displayed instead of 'SORTINNN'.

 User Guide for DFSORT PTFs UK51706 and UK51707 59

 ICE218A

This message can be issued in the JOINKEYS F1 or F2 subtask for an INCLUDE or OMIT operand of a
JOINKEYS statement for the same reason it is issued for the COND operand of an INCLUDE or OMIT statement.
Note that the INCLUDE or OMIT operand of the JOINKEYS statement will be displayed in the main task, not in
the subtask. You can use the DFSPARM data set to specify VLSCMP if appropriate.

If you specify an INCLUDE or OMIT statement in the JNFnCNTL data set for the JOINKEYS F1 or F2 subtask
instead of an INCLUDE or OMIT operand in the JOINKEYS statement, the INCLUDE or OMIT statement will be
displayed for the subtask, and you can specify VLSCMP in the JNFnCNTL data set if appropriate.

 ICE272A

Y4T, Y4U, Y4V, Y4W, Y4X and Y4Y and mixed and lowercase variations are added to the list of valid formats (f)
for p,m,f.

 ICE276A

Y4x (uppercase Y only), where x is any character, is added to the list of reserved words for symbols.

 ICE606I

For a MERGE operator, 'MERGE' will be displayed as the function and 'MERGEIN' will be displayed for ddname1.

For a COPY or SORT operator, if JKFROM is specified, 'JOINKEYS' will be displayed for ddname1.

 ICE613A

The required keywords for a MERGE operator are FROM and USING.

The required keywords for a COPY operator are now FROM and TO or USING, or JKFROM and USING.

The required keywords for a SORT operator are now FROM or JKFROM, and USING.

 ICE614A

MERGE is now a valid operator.

 ICE623A

The maximum number of FROM operands for a MERGE operator is 10.

 ICE624A

The maximum number of TO ddnames for a MERGE operator is 10.

60 DFSORT UK51706/UK51707

	User Guide for DFSORT PTFs UK51706 and UK51707
	Introduction
	Summary of Changes
	Operational Changes that may Require User Action
	JOINKEYS Application for Joining Two Files
	Introduction
	Syntax for JOINKEYS Statements
	Detailed Description for JOINKEYS Statement
	Syntax for JOIN Statement
	Detailed Description for JOIN Statement
	Syntax for REFORMAT Statement
	Detailed Description for REFORMAT Statement
	JOINKEYS Application Notes
	Example 1 - Paired F1/F2 records without duplicates
	Example 2 - Paired F1/F2 records with duplicates (cartesian)
	Example 3 - Paired F1 records
	Example 4 - Unpaired F2 records
	Example 5 - Paired and unpaired F1/F2 records (indicator method)
	Example 6 - Paired and unpaired F1/F2 records (FILL method)
	Using JOINKEYS with ICETOOL SORT and COPY

	Date Field Conversions
	Introduction
	Syntax
	Detailed Description for Date Field Conversions
	Conversion of Real Dates, Special Indicators and Invalid Dates
	Example 1 - Use of TOJUL, TOGREG and WEEKDAY
	Example 2 - Identifying Invalid Date Values

	Date Field Editing
	Editing of Special Indicators and Invalid Dates
	Example 1 - Use of Y4x(s)

	MERGE Operator
	Introduction
	Syntax
	Detailed Description
	Example 1 - MERGE five input files to one output file
	Example 2 - Merge seven input files to two output files

	MERGEIN alternate ddnames
	Introduction
	Syntax
	Detailed Description
	Example 1 - Use of three alternate ddnames for MERGE

	New Messages
	ICE288I
	ICE400A
	ICE401A
	ICE402A
	ICE403A
	ICE404A
	ICE405A
	ICE406A
	ICE407A
	ICE408A
	ICE409A
	ICE410A
	ICE411I
	ICE412A
	ICE413A
	ICE414A
	ICE415A
	ICE416I
	ICE417I
	ICE418A
	ICE419I
	ICE420A
	ICE421I
	ICE422I
	ICE423A
	ICE424A
	ICE425A
	ICE426A
	ICE427A
	ICE428A
	ICE429A
	ICE657A
	ICE658A

	Changed Messages
	ICE005A
	ICE018A, ICE113A, ICE114A
	ICE022A
	ICE039A
	ICE054I
	ICE056A
	ICE068A
	ICE083A, ICE098I, ICE118I, ICE253I, ICE254I, ICE258I, ICE298I
	ICE111A
	ICE151A, ICE221A
	ICE189A
	ICE217A
	ICE218A
	ICE272A
	ICE276A
	ICE606I
	ICE613A
	ICE614A
	ICE623A
	ICE624A

